
 algam Documentation (by NikosAssets)

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

2

Table of Contents
1. About AiMalgam .. 3

1.1 Scalability ... 3

1.2 Performance .. 4

1.3 Maintainability .. 5

2. Feature Showcase & How-to ... 6

2.1 Importing and preparing AiMalgam .. 6

2.2 Demos .. 7

2.2.1 Red Light Green Light (Similar to “Squid Game”) .. 7

2.2.2 Tower Defense .. 8

2.2.3 Sword Training ... 9

2.2.4 Hide & Seek ... 10

2.3 API Documentation ... 11

2.4 Working with the Graph Editor ... 12

2.5 Understanding the AI Workflow and what Node Settings to use ... 26

2.5.1 AiMalgamEntity ... 26

2.5.2 Decision-Systems ... 27

2.5.3 Settings .. 30

2.5.4 Actions ... 42

2.5.5 Blackboards ... 43

2.5.6 Engines .. 43

2.5.7 Descriptors .. 44

2.5.8 Additional Helper Classes .. 45

2.6 Working with the Control Panel and generating custom AI scripts 47

2.6.1 AiMalgam Asset Viewer ... 47

2.6.2 AiMalgam Code Creator .. 48

2.6.3 Custom Node Creation and understanding the Attributes ... 66

2.7 Example AI Behavior Implementations ... 70

3. Planned Features & Fixes .. 71

4. Dependencies .. 72

5. FAQ & Troubleshooting ... 74

6. Changelog .. 77

7. Contact & Support ... 78

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

3

1. About AiMalgam
This asset pack offers a generic, modular, settings-based and event-driven artificial intelligence (AI)

system, saving you the time to build a generic AI system (AIS) for many projects to come!

AiMalgam solves the performance, scalability and maintenance issues of common AI patterns, such

as finite state-machines (FSM), decision trees, behavior trees and rule-based systems (RBS) and

those AI asset packs that implement those patterns. The stated issues persist mainly in convoluting

the decision-making process with the Action execution (forced tree traversal), rather than separating

those tasks and saving performance!

If you want to read more into those issues and how these claims are proven, checkout this research

paper that is the foundation of this package. The names of the evaluated asset packs have been

obfuscated in the linked paper to keep them as anonymous as possible.

Disclaimer: The author of this paper, is also the developer of AiMalgam!

Note, that creating your own new AI logic via the Control Panel’s AI script generator or independent

of it requires at least intermediate programming knowledge in C#.

1.1 Scalability
Supported Unity versions: 2019.4 and ongoing.

Every render pipeline is supported, although actions are required for the demo scenes that include

materials with Unity’s built-in shader system (either convert them by hand or locate the respective

render pipeline package, as it is explained later in Section 2.1). Note, that this is independent of the

core AIS and its scripts.

Every operating system that is supported by Unity, is also supported by this AIS!

No forced pre-defined setups such as a mesh, rig or animation controller are required to run your

custom AI!

New custom AI behavior can be added while working in the Unity project by offering

expansion of the core AIS modules via inheritance. This includes implementing custom

decision-making, Action execution and data containers, able to interact with the (modular)

core AIS. This offers you the ability to build AI of any game genre, including but not limited to:

• FPS AI

• Rouge like AI

• Strategy AI

• RPG AI

• Tower Defense AI

• Platformer AI

• Stealth AI

• Survival AI

• Flying AI

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/BachelorThesis_NG_ModForPublic.pdf
https://aimalgam.api.core.nikosassets.com/BachelorThesis_NG_ModForPublic.pdf

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

4

1.2 Performance
Minimizing performance costs as much as technically possible is a crucial topic for game

development in general, hence the integrated game AIS must not eat up too many hardware

resources.

AiMalgam does not require tree traversal each time an Action has to be run and thus can save a lot

of performance by providing a modular and event-driven architecture (EDA) to make decisions

independent of Action calls.

This pack combines the best of the 3 main AI patterns (hence the name AiMalgam):

• Blackboards for data management and injection (per behavior, not globally)

• Scheduling Action executions independent of decision-making

• A mixture of the behavior tree and decision tree pattern for decision-making only

o Optionally providing State settings to define and locate the current running Actions,

as well as to identify what decisions were made in the past

If you absolutely require the traversal of decision trees each frame and not on an EDA basis, then you

might want to consider using another AIS that is optimized for that use case (with less overhead).

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

5

1.3 Maintainability
Building complex AI will get difficult to overview, understand and maintain over time. That’s why

AiMalgam provides you the node graph editor, where you can build and oversee your custom AI

behavior!

Dark mode (professional license & newer Unity versions):

Light mode (personal license & older Unity versions):

You can reuse any node in multiple graphs and split your graph into further sub graph for a better AI

architecture and modularity!

The graph editor mechanics are explained in Section 2.4 and the different node setting types defining

AI behavior in Section 2.5. To create custom node setting scripts, you can visit Section 2.6.2.

Also check out the video tutorial series!

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=AMok7lQs6Xc&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

6

2. Feature Showcase & How-to

2.1 Importing and preparing AiMalgam
While importing the package you can either include or discard the demo section, although you might

find the demo scripts very useful, since they contain example implementations for AI behavior, such

as spotting, following, animation, many Conditions, et cetera. To create custom AI though, the demo

section is not mandatory!

Optional: Instead of importing the sub-pack “HelperTools” in Dependencies/HelperTools/ directly, you

can also get it here or here for free. Be prepared though, to re-assign the missing assembly definition

files in AiMalgam (Core & Demo) if you choose to do so.

Including the demo and displaying the materials correctly you might need to make some changes

depending on your current render pipeline. If you use the built-in render pipeline, no actions are

required!

But if you use the URP or HDRP setup, you either need to convert the materials “by hand” via the

render pipeline wizard (see the HDRP and URP manuals) or locate the render pipeline package in the

path Demo/URP or Demo/HDRP:

Note, that the material color animations for demo hide spot entities are not working in the other

pipelines, since the shader parameter names differ from the built-in system. This is a simple

animation file issue, which will be addressed in future updates.

The example scenes are located at Demo/Scenes, where you can either load the “LoaderScene” or

the individual scenes at Demo/Scenes/Examples/:

To load the demo scenes dynamically, it is very important that you add them to your build settings:

Note, that in some Unity versions the (NavMeshAgent) movement speed of the Demo entities

differs. You can adjust the values in the respective MalgyNavMeshSpeedAdjustment

MonoBehaviours if necessary.

mailto:nikos.assets@gmail.com
https://assetstore.unity.com/packages/slug/224087
https://github.com/niggo1243/Unity3DHelperTools
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@7.1/manual/Upgrading-To-HDRP.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@12.1/manual/features/rp-converter.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

7

2.2 Demos
This section briefly explains the available demo examples that expand from the AiMalgam core AIS.

You can also visit the video tutorial series that explain how some Demo setups work in detail.

Note, that the demo setup uses quick setup models and animations to wrap the AI examples into

something observable. You can create or use any AAA (or low poly) models, rigs, animations,

textures you like to work with your custom AI created with this asset pack!

Also, the presented AI behavior implementations do not have to be used. You can create your own

custom AI logic as explained in Section 2.6.2.

2.2.1 Red Light Green Light (Similar to “Squid Game”)
This demo sample showcases a simple version of the red light green light game similar to the “Squid

Game” series on Netflix:

The red entities represent the game participants who try to reach the blue trigger boxes without

dying. The blue entity is the observer and spots early runners or slow stoppers, which then get shot

by the drone entity that is flying above. As you can see in the drone example you can create AI that

does not use any rig or animator controller and is thus not bound to any pre-defined or forced upon

setups!

The (red) runners die when shot and play a death animation before vanishing from the world. For

each death, a new runner spawns and gets added DYNAMICALLY to the scene!

So, there are no individual or “hard references” between the observer, drones and runners.

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=u7XZ3N4o3F0

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

8

2.2.2 Tower Defense
The tower defense setup combines multiple AI behaviors and different entities together, again

showing you that there are no borders for funky or different entities!

We have the archer, who prefers distance-based combat but can also strike with melee hits before

attempting to flee at some point in time within a restricted area.

The tower that remains in place and can only shoot projectiles, similar to the drone attacker.

The drone attacker, which slowly creeps from above targeting the closest target and shooting at it

until its gone.

And finally, the paladin who can only do melee combat, also chasing after the closest target. The

paladin will respawn again and again, so the defenses have no chance in winning sadly…

Every humanoid entity in this example can react to hits and play a random hit animation, interrupting

its combat.

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

9

2.2.3 Sword Training
Talking about hit impact reactions, this scene is providing yet another example on that topic.

Here a few paladins fight each other (no harm done) and react on impacts either by blocking or

playing an impact animation, depending on their Combat-State. This shows that you can setup AI

with more advanced combat mechanics, such as evading, parrying or blocking an attack.

Since the animations and animation controllers need to be refined further, in addition to some

trigger hit events not being called, some impacts might be missed out (Demo will be improved in the

upcoming AiMalgam versions).

Also, when building your own animation combat system, make sure to sync your animations with

your combat tools and systems. Depending on your setup, this will require some fine tuning and time

(see this video)!

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=u7XZ3N4o3F0

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

10

2.2.4 Hide & Seek
Lastly, a simpler setup, displaying entities that try to hide in certain hide spot boxes and seekers that

try to find and chase the hiders:

Fun fact, the hide boxes also represent AI entities! They contain a node graph that lets them change

colors by playing an animation (only in the built-in render pipeline) depending on if a seeker or a

hider entered the trigger box.

The hiders search the place for empty hide spots, go into one if found or flee when being spotted by

a seeker.

Similarly, the seeker searches for hide spots to reveal them and chases hiders when found, until the

hider is out of sight (and memory – about 2-3 seconds).

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

11

2.3 API Documentation
You can find the AiMalgam core API documentation here and the demo code documentation here.

The dependency documentations can be accessed here and here.

If you work with assembly definition files for your scripts and want to access and make use of the

AiMalgam code base, make sure to reference its assembly definition files:

• AiMalgamAssembly.asmdef

• AiMalgamImplementationsAssembly.asmdef

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/annotated.html
https://aimalgam.api.demo.nikosassets.com/annotated.html
https://github.com/niggo1243/Unity3DHelperTools
https://github.com/niggo1243/NaughtyAttributes

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

12

2.4 Working with the Graph Editor
It is recommended to watch the video tutorial series in addition to reading this manual for better

understanding!

You can add a new AiMalgamNodeGraph by opening the context menu in your desired location:

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=FPl6Z1GMMRQ&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=2

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

13

To run a node graph on an AiMalgamEntity, you need to add the AiMalgamDecisionSystem (see API)

MonoBehaviour to a GameObject and assign the respective graph to the “Node Graph” field, as well

as the “AiMalgamEntity” field:

To run the NodeGraph’s Action settings, you also need to add the required Engine (Action scheduler)

MonoBehaviour that can be viewed in the “EnginesRequiredByGraph” list. Make sure to hit the

“Refresh Required Engines by Graph” button at the bottom to update the list. See this video for

Engine implementation examples.

The same goes for the Descriptor MonoBehaviours required by special Condition node settings

present in the NodeGraph. You can view them in the “DescriptorsRequiredByGraph” list and also

refresh them by pressing the “Refresh Required Descriptors by Graph” button.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_base_decision_system.html
https://www.youtube.com/watch?v=Bdjyo2HYa3I&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=3

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

14

The decision-making process is only called, if the “Make Decision” or the “Always Make Decision”

fields are checked, or if you call the “MakeDecision()” method directly (see API). If you use a custom

Decision-System that doesn’t call the “Tick()” method, no decisions can be made even though the

check boxes are ticked.

In this case though (AiMalgamDecisionSystemUpdate), the “Tick()” method is called each Update

frame.

It is generally advised to trigger a decision once an event occurred (spotting, hit, destination reached,

etc.) and not each frame to increase the performance of your game. Again, calling the “Tick()”

method each frame does not trigger a decision automatically, but rather times the next possible

decision you triggered via its described fields or “MakeDecision()” method!

View the diagrams for Decision-Systems in Section 2.5.2!

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_base_decision_system.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_decision_system_update.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

15

The Graph Editor

On the left-hand side of the graph editor, you find the side-panel with 3 sub areas you can access by

clicking on their respective tab in the header. Said tabs help you to configure and display information

about the currently opened graph, access a node Inspector that supports editing of multiple nodes of

same type at once and create new node settings via the manage assets tab.

The floating mini tabs to the right of the side panel help you to toggle the complexity and node

visibility in your graph. It is recommended to work on “Min” or “Avg” display to have a cleaner

overview and also save rendering performance.

The small search icon lets you find the graph ScriptableObject in your project window by selecting it.

You can pan the grid are by holding and dragging either the right or middle mouse button. By

scrolling with the mouse wheel, you can also zoom in or out of the grid-view.

The Grid Area

Add nodes by either dragging them from the project window or using the context menu on the grid

area:

Note, that you should not create or connect nodes at runtime to prevent issues and unexpected AI

behavior! Changing the settings of a node though is absolutely fine!

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

16

The newly created node’s path is by default the same folder, where the graph editor is located as

well, unless you set a different location in the manage assets side panel:

You can also add existing nodes and reuse them in other graphs. Be careful though, since changing

the node’s settings will take effect everywhere it is referenced:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

17

Note that if you drag nodes, they or their node connections might not appear in the graph if the

graph’s visibility is lower than the dragged node’s visibility. The nodes and their connections do still

exist but are simply not rendered:

You can select nodes individually by pressing CMD on Mac and ctrl or shift on windows or select

multiple with a selection grid by holding and dragging the left mouse button on an empty grid-area:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

18

Selected nodes will also be selected and shown in the Unity Editor project view:

The Node Body

The node consists of 4 areas:

• The floating header

o Contains a small number on the left corner, indicating how many graphs host this

node setting. If not existent, this is the only graph (1 total graphs).

o The central area defines the special Decider assignment for this node (Only visible

and accessible for Decider node settings). This indicates from where to traverse the

decision-tree and when. The diagram found in Section 2.5.2 illustrates this in detail.

• The solid (black) header

o Contains an optional icon of the node in the left corner and displays the node name

in the middle.

• The node body

o Displays output and input ports of the node, which can only reference other

AiMalgamNodes in a single field or ListWrapper (see Section 2.6.3 and this video). No

primitive or other data types are displayed here, but you can access them in any

Unity Inspector.

• The node footer

o Displays the base type color on the left-hand side and the special (inherited color)

beside it. This helps you to find compatible nodes for other ports or spot and identify

the node setting type in the graph editor generally.

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

19

Opening the context menu while hovering over the node gives you yet another options-list:

• Assignment and Revoke assignment are only visible on Decider nodes and help you to

configure how and when a Decider should be traversed by its calling Decision-System

MonoBehaviour. One Decider can have multiple assignments, but the assignments cannot be

shared among other Deciders.

• Show in graphs list will open a popup window displaying a list of graphs that host this exact

node you selected:

By selecting a graph from the popup list, the graph object itself will be located and selected

in the Unity Editor (project window).

• Move to top will render this node above all other nodes.

• Rename the node. Don’t be shy to also rename the file itself in the project window!

• Copying or duplicating this node will also copy the input (not output) port connections of

the original node. Also note, that the file location of the node is the same as the original

copied one.

• Removing a node while keeping the ScriptableObject still in the project

o Removing and clearing the connections will cut any port connection to nodes that

remained in the graph. It will keep connections to those nodes, you have removed

with it via group selection.

o Removing and keeping its connections will still keep input and output port

connections to nodes that remained in the graph. Note that if you reopen the graph,

the node will reappear if its output port was connected to an input port of a

remained node (but not the other way around).

• Deleting the node permanently will also wipe the ScriptableObject, which cannot be

recovered! Also, the Undo/Redo history will be cleared to avoid reference and port

connection issues.

• Clearing dynamic ports will clear and unset every list item input port of this node.

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

20

The Node Port

Hovering and opening the context menu over an input port will display additional options, like

breaking an existing connection or creating a new one:

Create and auto connect compatible nodes to the hovered port:

Auto connect to compatible nodes in the same graph, without dragging the other desired output

port (across a long distance) to the hovered port:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

21

The Graph’s Side Panel [Graph Inspector Tab]

If you ever get lost in the grid-area and can’t find your nodes, press this button:

By default, nodes collapse on panning the grid-area and selection. You can turn those off with the

following checkboxes:

View and select special assigned Deciders in the graph by clicking on the list item or the small search

icon on the right of each Decider to focus it as well:

View the required MonoBehaviour Engines to run all Action settings on the target AiMalgamEntity

that are present in this graph (same base types occupy the same row):

View the required MonoBehaviour Descriptors to run special Condition settings on the target

AiMalgamEntity that are present in this graph:

View, select and focus node settings that are present in the current graph. Hidden nodes cannot be

focused (search icon is hidden as well) but can still be selected and configured:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

22

The Graph’s Side Panel [Node Inspector Tab]

Edit node settings, just like in any other Unity Editor Inspector window:

The bottom-most button reveals a popup that shows a list of graphs that host the same selected

node:

Selecting one graph list item will find and select it in the Unity Editor project window as well!

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

23

The Graph’s Side Panel [Manage Assets Tab]

View, add existing, configure the ScriptableObject’s creation path or create new node settings.

Depending on the node visibility, some setting sections might not appear:

With the edit icon (pen-shaped button) you can choose the file path for the next created node

setting that is created from this graph (also via context menues). By default the node’s file path is the

same as the graph’s one. The only exception to this is cloning or copying nodes. Those nodes will

have the same path, as the originally cloned node.

Pressing the “+” button, creates a new node setting of the chosen type in the setup path:

The search icon button will open a list of node settings (of chosen type) that already exist in the

project and can be added to this graph as well:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

24

Debugging AI Behavior

Debugging the graph editor only works in the Unity Editor and while in play mode!

First, you need to open the graph you want to debug, then you need to select the Decision-System

MonoBehaviour (or its hosting GameObject) that either references the opened graph directly, or one

of its Subgraph-Deciders in it. Do not confuse the Decision-System Component with the

AiMalgamEntity Component:

While in play mode you will see colored nodes (green = traversed and valid, red = traversed and

invalid, default/white = not traversed), also shown in this video. The marked nodes will be reset

before each decision-cycle, so keep in mind that your custom marked nodes might be reset if you

handle the marking outside of the decision-making cycle/ timing.

See the life cycle diagram in Section 2.5.2, the API, or the video series to know when to mark your

own node settings in the graph.

On the top left you will notice a number showing up, which displays the current decisions made by

the selected Decision-System. This helps you to find out if the decision-making process is called too

often or not often enough:

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=u7XZ3N4o3F0&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=5
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_base_decision_system.html#a720a9c2e287727b8f4405f0a02f4a32d
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

25

You can change the colors in the node preferences window. Make sure to reopen the graph after the

changes are made:

Unfolding the MonoBehaviour’s “Debug Info” foldout and “Current Decision” field, will show a flat

list of traversed Deciders and Conditions:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

26

2.5 Understanding the AI Workflow and what Node Settings to use
See this instruction video for this topic.

2.5.1 AiMalgamEntity
See the API here.

The central AI MonoBehaviour containing references to Descriptors

(custom data container MonoBehaviours) and Engines (Action schedulers):

The entity is crucial for decision-making and running Actions. It is the main required Component to

represent an AI entity instance in the runtime game environment.

You can acquire the required Engines (see Section 2.5.6) or Descriptors (see Section 2.5.7) by the

respective get methods or from the list directly. Those methods are used to assign Action settings to

their compatible Engines or get Descriptors for Condition settings, all without using expensive C#

reflection calls but rather pre-generated hash values.

The Descriptor and Engine MonoBehaviours store the hash values in the “Debug Info” foldout. They

are generated automatically upon initialization.

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=Bdjyo2HYa3I&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=3
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

27

2.5.2 Decision-Systems
See the API here.

Section 2.4 already explains the purpose of the Decision-System in detail.

The Life Cycle and Tick Schedule of a Decision-System

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

28

Async sequential Action handlers (see API) can be configured via the Multiple-Decider node settings:

Checking old Async Action Handlers (from Multiple-Decider Settings)

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_async_action_queue_handler.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

29

Async Action Handler Life Cycle (from Multiple-Decider Settings)

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

30

2.5.3 Settings
Any AI behavior is configured via Unity’s ScriptableObject system and can be displayed and

maintained in the graph editor (see Section 2.4).

Each AiMalgam setting inherits from the AiMalgamNode (see API) and depending on its type, covers

a specific functionality for the decision-making process. You can create your own node settings as

shown in the video here and later in Section 2.6.2.

Note, that you should not create nodes, change or make new connections at runtime to prevent

issues and unexpected AI behavior. Changing the settings of a node though is absolutely fine!

The following illustration contains an AI decision-tree that uses Decider node settings in combination

with Condition settings to branch between other Deciders and Action settings as leaves:

Section 2.4 explains that you need to set up additional Components

(AiMalgamEntity & AiMalgamDecisionSystem) to run the desired graph.

Summarized, each node setting type has a special purpose for the AI flow:

• Deciders branch the AI decision

• Conditions (in)validate (block or pass the tree traversal)

• Comparers are used to sort and compare a list of AiMalgamEntities

• Action settings represent AI Actions (animations, sounds, movement, basically anything that

interacts with the game environment).

• State settings are used to find and represent Actions (also to dispose looping ones)

• Runtime-Sets store global (primitive) data

You can also create your own node types as shown in Section 2.6.3 or in this video.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_ai_malgam_node.html
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

31

Decider Settings

See the API here.

The usual Deciders either branch to other Decider nodes or Action settings, depending on if the

“IsLeaf” field is checked or not:

You can also remove States and Actions that are represented by those, if a Decider’s traversal was

successful:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_deciders.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

32

“Special” Deciders can also link to other graphs, like the Subgraph-Decider:

The Single-Decider only picks the first valid child (Decider or Action setting) and ignores the traversal

of the other children in the list, just like the selector task of a behavior tree. Make sure to order your

connections list correctly, since the order represents the traversal priority:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

33

The Multiple-Decider node is related to the sequence task of a behavior tree. It by default tries to

apply all children and invalidates if at least one child invalidated. You can turn that option off and

validate, if at least one child was successful. The difference to the Single-Decider is that it will still

apply the following child nodes in the list and not stop on the first successful:

Additionally, you can apply the Action settings in an asynchronous sequence, where the upcoming

Action in the list must wait on the previous Action to finish (see the previous Section 2.5.2):

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

34

The Score-Decider reads the AiMalgamConditionResult score (see API) from either the Decider’s

Condition field or the “conditionToEnter” field found on Action settings to prioritize the decision

traversal. This is a great way to implement own machine learning techniques that modify the

Condition score outputs depending on if your AI was successful or could improve in some shape or

form:

You can combine the Score-Decider with special Score-Conditions that read from the

Score-Descriptor (MonoBehaviour) that is attached on the deciding AiMalgamEntity:

The Random-Decider, as the name suggests picks a child at random:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_condition_result.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

35

Condition Settings

See the APIs here and here.

Condition settings offer a mechanism to validate or invalidate a certain given input in a modular and

expandable manner by using them as an optional attachment for other (node) settings, reducing the

number of nodes and layers in a tree, unlike how the conventional behavior tree pattern handles it.

The Condition setting’s main method takes an AiMalgamEntity as its target to check the condition on

and another entity that represents the calling Decider entity used for graph debugging.

Conditions usually store values that must match the provided values of the AiMalgamEntity runtime

instance, for example checking if the required States are found on the target:

It is also possible to group Conditions by for example using the AiMalgamANDConditionContainer or

the AiMalgamORConditionContainer (or creating a new grouping Condition type):

Both containers calculate the average scores of the checked child Condition results for the final

Condition output.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions.html
https://aimalgam.api.demo.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_a_n_d_conditions_container.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_o_r_conditions_container.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

36

Some Conditions require a Descriptor MonoBehaviour on an AiMalgamEntity to read special instance

and runtime-based values, for example the health amount of an entity:

Such Conditions inherit from special Descriptor-Condition classes that automatically generate the

Descriptor hash for you!

You can find the required Descriptor name and its generated hash in the Condition’s “Debug Info”

foldout section. The hash is then used as a parameter called in the “GetDescriptorByHash()” method

found in the AiMalgamEntity class.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html#a657dea4c9197d02e649ae04d3e48dd29

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

37

Action Settings

See the APIs here and here.

Action settings represent the leaf settings of the AI decision tree, containing information about the

execution frequency, life span, and input data for the resulting Action that is managed by the

scheduler (Engine).

Since each Action must be maintained inside an Engine, the same base Action setting applies for

every custom Action:

The base Action setting provides relevant life-cycle information about the resulting Action for the

scheduler (Engine MonoBehaviour) and the Decision-System, such as:

• The Condition to validate this setting before applying it to the Engine (upon entering)

• The Condition to validate this Action before each run cycle in the Engine (already applied)

• Infinite or limited repetition of this Action during its life cycle in the Engine

• Delay of execution, as well as the exact timings

• Max allowed Actions in one Engine at once sharing this exact setting (reference)

• Success or failure if the stack limit was reached

• The priority, indicating the execution order if multiple Actions are present within the same

Engine

• Resetting any modified Components at runtime if the Action disposes and if there is anything to

reset in the first place

• The disposal requirements indicating when and under which Conditions the Action should

terminate

• The State setting represented by this Action (setting) to be able to find and remove it later on

• States and Actions, which should be removed upon entering the Engine

• States and Actions, which either prevent this Action from entering the Engine or terminate this

Action when already running

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_actions.html
https://aimalgam.api.demo.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_actions.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

38

Each Action setting defines its respective base Action class as a generic argument and generates a

name and hash value from it automatically!

This is crucial to map the compatible Engine to this Action setting by calling the

“GetEnginesByHash()” method found in the AiMalgamEntity class.

You can find this information in the setting’s “Debug Info” foldout:

And here is the Action settings and Engines to Actions mapping diagram:

This video covers custom Action settings used in the demo that inherit from the AiMalgam core asset

pack. You can create your own Actions with the Control Panel’s code creation tools as explained in

Section 2.6.2.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html
https://www.youtube.com/watch?v=Bdjyo2HYa3I&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=3

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

39

State Settings

See the API here.

The State settings include fields such as the label (string) for description, a labelHash (ulong)

generated from the string for faster comparisons and an optional parent of type BaseLemma. The

parent field enables to group State settings in a hierarchy for less maintenance and less logical checks

if entire State groups can be found within one check.

State settings are especially useful for Condition checks, knowing the running Actions of an

AiMalgamEntity and finding the Actions to dispose them at any time!

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_states.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

40

Comparer Settings

See the APIs here and here.

The Comparer settings help you to sort or find an AiMalgamEntity by custom comparison checks, for

example distance, States or names:

They are useful for follow or combat targeting, as it is implemented in the demo Follow-Action

settings for instance.

Calling the “Compare()” method requires 3 parameters (see API). The first 2 being the list elements

to compare and the 3rd one being a special entity to check the list item against (to determine the

distance for example).

The “GetResult()” method will return the winning entity from the given list.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_comparers.html
https://aimalgam.api.demo.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_comparers.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_comparers_1_1_ai_malgam_base_comparison.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

41

Runtime-Variable Settings

See the API here.

Runtime-Variables contain (primitive) data types or sets that can be shared across scenes and graphs

to read global data that is modified at runtime. This approach is inspired by this GDC talk and covers

an alternative architecture to for example singletons. It is used in the demo implementation but if

you create your own custom AI settings, you are not forced or restricted to do so as well (you can for

example read from Blackboards and Descriptors that reference singletons or whatever!!).

In the demo implementations they are mainly used to register and unregister dynamically added

AiMalgamEntities in scenes to be considered in Action settings, such as following a list of dynamically

added entities:

Unfortunately, GameObject references in ScriptableObject fields will always display the type

mismatch name:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_runtime.html
https://www.youtube.com/watch?v=raQ3iHhE_Kk

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

42

2.5.4 Actions
See the APIs here and here.

Action scripts are the custom AI logic implementation of their respective Action setting. An Action

needs a Blackboard data type to read runtime and instance-based values from the respective Engine

and entity (if any data is required in the first place).

The Life Cycle of an Action

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_actions.html
https://aimalgam.api.demo.nikosassets.com/annotated.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

43

2.5.5 Blackboards
See the APIs here and here.

When creating custom AI logic, or AI logic that is not known yet, a generic architecture is needed to

offer the implementation and injection of custom data types and containers for that not yet known

logic. The Blackboard pattern combined with the C# generic arguments is the perfect pattern for

that!

Blackboards are used to deliver runtime and instanced-based data retrieved from the Action’s

hosting Engine. This can for example be the current deltaTime, or special animation keys, or any

other dynamically modified data value the Action needs.

2.5.6 Engines
See the API here.

Since this asset pack separates Action execution from decision-making (in this case tree traversal), a

dedicated class is required that manages Actions after a decision was made.

The Tick Schedule of an Engine

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_actions.html
https://aimalgam.api.demo.nikosassets.com/annotated.html
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

44

2.5.7 Descriptors
See the APIs here and here.

The Descriptor class is mainly used as a specific data container for Conditions but can also be used in

combination with Engines, Actions or any other architecture.

Unlike the Blackboard implementation combined with Actions and Engines, the Descriptor class is an

optional Unity Component and is usually not tied to any Engine or Action. Since the AiMalgamEntity

only contains State settings to describe itself but not any other form of instance-based data, the

Descriptor offers a (dynamic) extension to the AiMalgamEntity, enabling a modular approach to

include custom runtime data.

For example, containing information about spotted entities:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_descriptions.html
https://aimalgam.api.demo.nikosassets.com/namespace_nikos_assets_1_1_ai_malgam_1_1_descriptions.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

45

2.5.8 Additional Helper Classes

Destination Containers combined with Runtime-Sets (Node Settings)

Inheriting from the helpers Destination container (see API), you can create your own container that

stores a list (distinct if wanted) of the given generic argument type and additionally emits events

when the list was changed. This example stores AiMalgamEntities and furthermore enables you to

read from Runtime-Sets (globally stored ScriptableObject AiMalgam node settings) either reacting to

its changes or copying them initially into this container at runtime. Similarly, you can store your list

items into a Runtime-Set as well:

Register Self to Runtime-Sets (Node Settings)

In some graphs you might want to use the Runtime-Set node settings to inject a list of for example

AiMalgamEntities into an AiMalgam Action or Blackboard. This MonoBehaviour registers the given

entity either at Start/ Destroyed or when Enabled/ Disabled:

This Component is used by many entities found in the Demo example scenes.

mailto:nikos.assets@gmail.com
https://niggo1243.github.io/Unity3DHelperTools/class_nikos_assets_1_1_helpers_1_1_base_destination_container_mono.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

46

AlarmClock emitting Time Events

Found in the helper’s dependency folder (see API), this MonoBehaviour allows you to setup a timed

event, which can be used to for instance make a decision every x seconds or minutes:

Keep the Scene View focused when entering Play Mode

Also found in the helper’s dependency (see API), this script when enabled prohibits the Unity Editor

to focus the Game window:

Respawn removed Entities

In some demo scenes removed AiMalgamEntities from a Runtime-Set node setting will respawn

another entity prefab at some random pre-defined spawn points (see API):

mailto:nikos.assets@gmail.com
https://niggo1243.github.io/Unity3DHelperTools/class_nikos_assets_1_1_helpers_1_1_alarm_clock_mono.html
https://niggo1243.github.io/Unity3DHelperTools/class_nikos_assets_1_1_helpers_1_1_keep_scene_view_in_focus_mono.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_demo_1_1_respawner.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

47

2.6 Working with the Control Panel and generating custom AI scripts
It is recommended to watch the video tutorial series additionally to this manual.

With the AiMalgam Control Panel you can view, locate and delete every graph and node setting

stored in your project. Additionally, you can create your own AI logic via the code creator tab.

2.6.1 AiMalgam Asset Viewer
In the Asset Viewer tab, you have 2 separate lists, one containing graph assets and the other node

setting assets. Make sure to check the refresh icon at the bottom right corner of the respective list to

update newly created AiMalgam assets!

Selecting an item in one or the other list, will select it in your project and locate it as well.

You also can sort both lists by their offered dropdown options and special column information.

Additionally, the node list offers you to filter certain nodes by their connections amount and in

graphs amount if you like.

Deleting assets works by first checking the checkbox of the assets you wish to delete and finally by

pressing the delete checked button at the bottom of the respective list. A new popup window will

appear, informing you that this action cannot be undone and that the undo/redo history will be

cleared as well. Also note that the ScriptableObjects you want to delete might be referenced in non-

connection setups, like in MonoBehaviours or other ScriptableObjects (Only if you have set this up)!

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

48

2.6.2 AiMalgam Code Creator
It is highly recommended to watch the video series for better code creation understanding!

If you are using assembly definitions, make sure to reference those assembly definitions where you

output the generated code:

Before you can generate a new script file, you first need to define a class and file name (input field)

and set the file’s location within your project (edit icon to the right). Finally, press the create button

(rectangular “+” icon at the bottom of each section) to generate the script(s).

All scripts generated in the same folder example:

Creating new AI Behavior Packs

To create new AI logic, use the following displayed section. The 2 checkboxes below create specific

(non-abstract) Action and Engine implementations that inherit from their respective base classes.

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=zWgjhf6uNsI&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=4

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

49

After pressing the “Create behavior pack” button, you can add your custom Actions via the graph’s

and project’s context menu, as well as the graph’s side panel:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

50

The “sub-Update” Engine (checkbox = true) can be added as a MonoBehaviour script to your

GameObject:

Generated Action Node Settings

As you can see in the following illustration, the custom generated Action settings inherit the

AiMalgamBaseSettingsForEngine class (line 12) and define the required generic arguments as the

also and alongside generated custom Action and Blackboard types. This is very important to establish

the hash value later used by the AiMalgamEntity to map the Action setting to the respective Engine

without using reflection calls whilst mapping!

In the class body you can add all sorts of settings for your custom Action!

The class and field attributes will be explained later in Section 2.6.3, showing you how to offer

custom input ports and input port lists.

For generated settings you do not need to define an extra output field! This is only relevant if you

want to further specify your setting or create a blank node that inherits directly from AiMalgamNode.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_actions_1_1_ai_malgam_base_settings_for_engine.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_actions_1_1_ai_malgam_base_settings.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

51

Generated Custom Base Action

The custom Action allows you to interact with the game environment on an instance-based level at

runtime. See the life cycle diagrams in the Sections 2.5.4 and 2.5.6 to understand when the methods

are called.

The Initialize method (line 59) is called only once the Action is applied to the respective Engine.

The Restore method (line 66) is called right before the Actions disposal and only if it was checked in

the represented Settings.

The Validate method (line 71) is called right before each run method call and can lead to skipping the

Run method, if not even disposing the Action if it invalidates/ returns false (depending on the Actions

settings setup). Note that the Condition to validate setting is called in the Engine separately, so you

don’t have to implement it in each validate method.

Generated Custom “sub-Action”

Here you see the generated “sub-Action” (checkbox = true) that includes the Run method (line 15)

where you would execute your desired AI entity logic!

The Success property as shown in line 20 is relevant for the async life cycle as shown in Section 2.5.2,

where async sequential Actions wait for the previous Action to dispose (successfully) as defined in

the Multiple-Decider node setting.

If you want to interrupt the Actions life cylce, you can simply set the following Action property to

true. In the next Engine Tick the Action will then be disposed, as you can see in the life cycle

diagrams in Sections 2.5.4 and 2.5.6.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_actions_1_1_ai_malgam_base_action.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

52

Generated Custom Blackboard

Blackboards are used to transfer data prepared from the Engine to its running Actions, as shown in

the previous Action object methods. The Actions can also write data to the Blackboard to make it

accessible for other Actions or other Scripts that read from the Engines Blackboard property.

The generated Blackboard is by default empty since you don’t need to put data in there unless

required by your Action logic.

Here is a Blackboard example for the demo movement Actions (flee and follow), setting some

primitive data and Component references as well:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/interface_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_actions_1_1_i_ai_malgam_blackboard.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

53

Generated Custom Base Engine

The generated Engine (MonoBehaviour) is needed to host and manage your custom Actions. It

extends the AiMalgamEntityBaseEngine class and sets your custom generated Action and Blackboard

classes as the generic arguments (line 8) to calculate the hash value later used in mapping the

custom Action setting to this Engine.

The generated Blackboard type can then be accessed and modified with the overridden property at

line 12.

To convert your custom Action settings to your custom Action, you need to modify the

“ApplySettings()” method featured in line 19. Usually, you just want to create a new instance of your

custom Action, either always the same or as shown in the illustration via a switch statement that

reads an enum (or any other data) from your custom settings. This is also done in the demo spotting

and follow Engines.

Line 21 and 40 define a result object used in the leaf traversal mechanic and are very important for

the decision-making process (returned in line 48). Make sure that this success or failure validation

matches your custom implementation. Usually, this implementation is the way to go.

In line 44 we must add the instantiated Action to this Engines queue to later be run in the “Tick()”

method.

Line 46 marks the given custom Action node settings in the graph, as long as the selected

Decision-System Component hosts the same opened graph editor (see Section 2.4). Theoretically this

is optional but why should you miss out debugging this Action setting node in the graph editor?

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines_1_1_ai_malgam_entity_base_engine.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

54

Generated Custom “sub-Engine”

If you checked the box to generate a sub-Engine, this is the generated class. It only consists of an

“Update()” method that calls the base Engine’s “Tick()” method. You can handle the Engine’s life

cycle at any time you want, it doesn’t have to be the Unity3D default “Update()” method!

Here is an example Engine handling the different follow Actions from one follow Action setting:

If you unfold the “Debug Info” foldout found in the generated Action setting node and the generated

Engine MonoBehaviour, you will find the hash value used for mapping the generated Action setting

to its Engine via the AiMalgamEntity:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

55

Creating new Descriptors

The Descriptor class is your custom dynamic data container for the AiMalgamEntity instance since by

default the AiMalgamEntity only represents its current AiMalgamStates with just their label

information. Adding a Descriptor can help you define a more specific entity and use it in Conditions,

therefore in the decision-making process as well.

Like in the previous script generation section, you need to define a path and the file name. Make

sure to reference the assembly definition files if you use one yourself!

You can add the generated script to any GameObject. Make sure to set the hosting or extending

AiMalgamEntity either via the “AutoFill” button found in the Inspector or by assigning the field on

your own.

The generated script is empty by default and only inherits from the base Descriptor class in line 3:

Here is an example showcasing a Health-Descriptor used in the demo samples to keep entities alive

or kill them off via their respective graphs:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_descriptions_1_1_ai_malgam_base_descriptor.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_ai_malgam_entity.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_states_1_1_ai_malgam_state.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

56

Creating new independent Condition Node Settings

You can either create independent Condition node settings or Descriptor dependent ones:

The generated Condition settings can be added via the context menus or via the manage asset side

panel found in the graph editor:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_base_condition.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

57

Every AiMalgam Condition node setting offers the “IsConditionMetFor()” method (as seen in line 13

and in the API) which takes 2 AiMalgamEntity objects as parameters, one for the actual condition

check and the other to allow or disallow marking this Condition setting in an opened graph editor

while in the Unity Editor and in play-mode. During the tree traversal, both given entities are the

same. Only in special circumstances like in follow or spotting Actions are those 2 entities different.

Add your custom values to check in the class body and do the check logic in the method:

Creating new Descriptor dependent Condition Node Settings

To create a Descriptor dependent Condition node setting, tick the checkbox below and select your

desired Descriptor that must be present on the target AiMalgamEntity to read its data and validate

the Condition.

If you use Descriptors from the demo implementation, make sure to reference the demo assembly

definition file to yours, as long as the resulting path is within your own assembly definition scope. If

you don’t use any assembly definitions, just ignore this.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_base_condition.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_conditions_1_1_ai_malgam_base_condition_for_descriptors.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

58

In line 12 you see a different base class that takes the required and previously selected Descriptor

type as a generic argument. This is mandatory to generate the hash used in line 22 to finally retrieve

the required Descriptor from the target AiMalgamEntity. Provided the target entity has the

Descriptor you can check its values against the ones you may define in this special Condition node

setting:

You can usually find the hashes in the respective “Debug Info” foldouts

(Health-Condition & Descriptor example):

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

59

Creating new independent Comparer Node Settings

Comparer node settings are used to provide custom compare and sorting algorithms for a list of

AiMalgamEntities or their required Descriptors, depending on if you check the box below. The setup

is the same as in the Condition creation section.

The newly generated Comparer node settings can also be accessed via the context menus and the

manage asset side panel:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_comparers_1_1_ai_malgam_base_comparison.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

60

Looking into the code reveals that it contains 2 simple methods, one for the actual comparison

between 2 list elements and a “global” entity (line 25) and the other one to retrieve a single entity

result (line 31). You can by default remove the “GetResult()” method starting from line 31, since the

“Compare()” method from line 25 is called in its base method. It is there to present you an option to

temper with it:

Here you can see an example Comparer node setting that gets the closest entity from the given list

by comparing each entity’s distance to the 3rd parameter from line 25.

Here you can see a context where a Comparer node setting might be used. In this case to follow the

closest target:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

61

Creating new Descriptor dependent Comparer Node Settings

Similar to the Descriptor dependent Conditions you can generate Comparer settings to be also

dependent of Descriptor MonoBehaviours. Just make sure to reference the additional assembly

definition files if you use demo Descriptors and maintain an assembly definition file on your own.

Looking into the code reveals that similar to the Condition settings a special base class is used in line

14 which takes the required Descriptor type as the generic argument. This type is then used to create

the hash and to retrieve the required Descriptor from the target AiMalgamEntity as shown in line 29

and 30:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_comparers_1_1_ai_malgam_base_comparison_for_descriptors.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

62

Creating new Decider Node Settings

You can either create a “normal” Decider script (checkbox = true) or a ”special” one that does not

separate its children into leaf or branch settings, similar to the Subgraph-Decider node:

Newly generated Decider node settings can be accessed via the context menus or the manage assets

side panel (as usual):

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_deciders_1_1_ai_malgam_base_decider.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_deciders_1_1_ai_malgam_decider_wrapper.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

63

Here is a list of those “normal” Decider nodes that inherit from the AiMalgamBaseDecider class:

As you can see in the following illustration, a “normal” Decider setting offers 2 overridden methods

to either traverse Action settings (line 48) or Decider settings (line 13). Those 2 methods are called in

the “RootTraverse()” method found in the base class:

The provided method implements the Single-Decider traversal logic. When working with Decider

children, make sure to call their “RootTraverse()” method as shown in line 30. Don’t forget to pass

the decision parameter into it and finally return it to build the final AI decision:

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

64

Here is an example of a “normal” branch Decider setup:

Looking into the “LeafTraverse()” method reveals an additional step that must be made. In line 51

you see a result object being created and assigned again at line 55, calling the base method to apply

the Action setting to its respective Engine (if found) and building the result object again.

Afterwards you must update the result list item (line 62) found in the decision object parameter

(from line 44) to update the AI decision generally.

Here is an example of a “normal” leaf Decider setup:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_deciders_1_1_ai_malgam_decision.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

65

To create “special” Decider nodes that do not separate Action and Decider children, uncheck the box

below it:

As mentioned, the Subgraph-Decider is such a “special” Decider:

The generated “special” Decider script reveals the Subgraph implementation and the

“RootTraverse()” method in line 20 you can adjust to define custom traversal. Just make sure to pass

and handle the AiMalgamDecision object for correct AI decision-making (tree traversal) and graph

editor debugging (node color display)!

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

66

2.6.3 Custom Node Creation and understanding the Attributes
If you want to create a custom node setting that is independent of the code creator tab and other

pre-defined node setting types or setup custom input port (lists) and make use of the other

attributes, here is how you can do it.

To create any custom node, you can simply derive from the AiMalgamNode class (see API) or its sub

class AiMalgamBaseNotesScriptableObject you can find in the API as well.

To prepare a port list to be displayed in the graph editor (for port connections), you need to create a

wrapper class that derives from the ListWrapper class (line 9), specifying a type that also must inherit

from the AiMalgamNode class in order to work. Notice, that this class must be marked Serializable

(line 8) to be displayed in the Unity Inspector.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_ai_malgam_node.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_ai_malgam_base_notes_scriptable_object.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_helpers_1_1_list_wrapper.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

67

When working with a new custom blank node (or specializing a node setting), you must define the

output port by offering a field that returns the type of the hosting class. Additionally, you must add

the [Output] attribute above it (line 21 to 24).

Generated node settings will already contain an output port, so you don’t need to do that unless you

want to specify it.

Usually, you don’t want to temper with that field and can hide or collapse it via the [Foldout]

attribute in line 22 that is provided by the NaughtyAttributes dependency (see Section 4).

To display a single input port, you must define a field of base/ancestor type AiMalgamNode and put

the [Input] attribute above it. Notice, that you can restrict the connections by specifying the type

constraint (line 26 to 28).

Grouping data together can ease the maintenance and readability of settings. You can do that by

using yet another NaughtyAttribute: [BoxGroup] (line 27 & 31).

To show the port list, as prepared above you need a field of the created wrapping type and add the

[ReordableNodeList] attribute as shown in line 30 to 32. It is very important that the given type

matches the ListWrapper’s type argument you set up!

Starting from line 34 to 47 you find some interesting methods you might want to override. The

“OnOpen()” method is called once the hosting graph editor is opened. The same goes for the

“OnClose()” method when the currently opened hosting graph editor is closed.

When marking this node setting outside the decision’s life cycle (see Section 2.5.2), it might be reset

to white without you wanting it. You must keep that in mind and react to it by either subscribing to

the selected Decision-System’s events (see API) or by prohibiting the reset when overriding the

“ResetMarkingInGraph()” method (line 44).

Another interesting method you might want to call “OnValidate()” is the “NotifyOnNodeChanged()”

method. It notifies any listener of this node setting (like Actions) to changes made.

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_helpers_1_1_attributes_1_1_reordable_node_list_attribute.html
https://aimalgam.api.core.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_decisions_1_1_ai_malgam_base_decision_system.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

68

The port type constraints explained:

If you want to create your custom node from within the graph editors side panel, you must

implement a custom interface that implements the IAiMalgam interface:

To create your custom node from the project window’s context menu, you must add the

[CreateAssetMenu] attribute (see Unity’s API) above the class header. Note, that this attribute will

NOT be inherited!

To create your custom node from the graph editor’s grid area, you need to add the

[CreateNodeMenu] attribute. This attribute will be inherited and you just need to define the context

menu path and not the file name!

To define a special width in pixels within the grid area, use this attribute:

If you want to always show or always hide your custom nodes in the grid area, add this attribute

above your class header:

mailto:nikos.assets@gmail.com
https://aimalgam.api.core.nikosassets.com/interface_nikos_assets_1_1_ai_malgam_1_1_i_ai_malgam.html
https://docs.unity3d.com/ScriptReference/CreateAssetMenuAttribute.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

69

To add an icon in the asset viewer, side panel and the grid area, add the following attribute above

your class header. You can either set a resource path or a Texture2D directly. Note, that this is not

the same icon displayed in the project’s window. For that you need to go to the script file and

change the icon in the top left corner.

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

70

2.7 Example AI Behavior Implementations
Note, that the AiMalgam demo implementations are custom expansions from the core system and

not directly part of it, meaning that you can build and implement a (better) version yourself !

The current example implementations consist of:

• Spotting behavior

o Contacts (Trigger & Collisions)

o Raycasts

o View Cones (One, Hals and 4 Angle setups)

o Distance

o React to spotted entities differently

o Filter spotted entities into separate containers

• Follow behavior (Rigidbody, transform and Navmesh)

o Tailing

o Just looking

o Flanking

o Randomly roaming around

• Flee behavior (Rigidbody, transform and Navmesh)

o Flee at random point (away) from chase direction

• Animation behavior

o Set animation parameters of any time

o Dynamic (external) or fixed values

o Blend and damp float values over time

• Combat behavior

o Define a custom combat procedure (prepare, attack, cooldown, etc.)

o Work with combat tools

o Compatible with animation events and animation or physics driven combat

• Any behavior

o You can quickly create simple AI Actions by inheriting from this Action

implementation

• Special Conditions and Descriptors used in the Demo environment

Since the custom demo AI behavior implementations would blow up this document and can be quite

complex to understand at first glance, I advise you to look into this video.

mailto:nikos.assets@gmail.com
https://www.youtube.com/watch?v=Bdjyo2HYa3I&list=PLMCZMqGcK6AB13g-zvXjdyzpuSMQ7RxTH&index=3

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

71

3. Planned Features & Fixes

• A decision statistic showing how often and where the traversal is done

• Showing connections on both sides to improve the visibility in the graph editor

• Toggling certain connection types in the graph editor

• As far as possible, improve the graph editor performance

• Improve and fix small issues in the demo setups by exchanging animations and working on

the existing AI setups

• Add search fields for nodes in the Control Panel and graph editor

• Add filter and sorting mechanics for the graph editor nodes list section

• Don’t clear undo/redo when deleting AiMalgam assets

• Implement an FPS limiter/ stabilizer option to load balance and reduce AI calls, rather than

slowing down the machine

• Add fuzzy logic examples

• Add goal-oriented behavior (GOB) examples

• Add sound AI behavior examples

• Add networking AI behavior

• Add Boids AI examples

• Add “daily life” AI examples (like in a SIMS or farmer game)

• Add 2D examples

• [Add YOUR ideas and feature requests (or bugs) by contacting me]

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

72

4. Dependencies
See the “Third-Party Notice.txt” file for more information about the third-party licenses.

Unity3DHelperTools (developed and maintained by this author):

An open-source collection of handy tools.

If you use assembly definition files, add this to make use of this framework:

• NikosHelpersAssembly.asmdef

Alternatively, you can download this pack from the asset store (for free).

NaughtyAttributes forked from dbrizov:

An open-source editor extension framework to organize the Inspector. This version has improved

performance for large data files.

If you use assembly definition files, add this to make use of this framework:

• NaughtyAttributesPerfFork.Core.asmdef

xNode originally developed by Thor Brigsted:

An open-source node graph editing framework highly modified and improved to fit this asset pack.

Since this modified version is built mainly to work with AiMalgam, it might not work out of the box

for custom node-based implementations that derive from it directly. Feel free to try It out by adding

this assembly definition file to yours:

• XNodeCustomN.asmdef

mailto:nikos.assets@gmail.com
https://github.com/niggo1243/Unity3DHelperTools
https://assetstore.unity.com/packages/slug/224087
https://github.com/niggo1243/NaughtyAttributes
https://github.com/Siccity/xNode

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

73

The 1st and 2nd tool you can also import via the manifest.json file, found in (Package/manifest.json).

With that procedure, no direct import of the dependency packages is required and can be made

possible with the following example configurations:

{

 "scopedRegistries":

 [

 {

 "name": "NaughtyAttributesPerfFork",

 "url": "https://upm-packages.dev",

 "scopes": [

 "com.nikosassets.naughtyattributes"

]

 }

],

 "dependencies"

 {

 "com.nikosassets.u3dhelpertools":

"https://github.com/niggo1243/Unity3DHelperTools.git#upm"

 }

}

Or:

{

 "scopedRegistries":

 [

 {

 "name": "NaughtyAttributesPerfFork",

 "url": "https://upm-packages.dev",

 "scopes": [

 "com.nikosassets.naughtyattributes"

]

 },

 {

 "name": "Unity3DHelperTools",

 "url": "https://upm-packages.dev",

 "scopes": [

 "com.nikosassets.u3dhelpertools"

]

 }

],

 "dependencies"

 {

 "com.nikosassets.u3dhelpertools": "1.1.1"

 }

}

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

74

5. FAQ & Troubleshooting
Q:

Why can’t I select or modify the input field of a (newly created) node setting in the graph’s node

Inspector side panel!?

A:

This is a yet unknown Unity issue (still investigating) that pops up at random. You can just reopen the

graph editor and it should work again!

Q:

The Animation-Actions and Action settings are not working. What’s the problem?

A:

Make sure to add the Animator-Engine to your animated entity and configure the animator to use

the same animator controller the setting refers to. Using “Apply Physics” as the “Update Mode”

might cause problems in the animator controller as well. Also apply the animator to the animator list

in the Animator-Engine. Otherwise make sure that the Action was applied successfully in the first

place and check its life cycle settings!

In some other cases the animator controller might get stuck in a state, or you tried to change the

animation during an animation transition. Also observe if the desired animator parameters were

unset/ reset, before the animation (transitions) had a chance executing in the controller.

Q:

Why can’t I add a node setting to the graph’s grid area?

A:

Check if the node already exists in the graph and look at the warnings in the console. Also make sure

that the graph editor’s visibility is set to display your placed node (might be added but hidden).

Q:

I tried to change the AI decision tree during play mode, but it didn’t change the behavior. What’s the

issue?

A:

Changing connections during play mode is not recommended and can cause issues. You can change

the settings at any time but not the connections at runtime.

Q:

Why didn’t the node colors update after I changed them in the preferences?

A:

Reopen the graph

Q:

Why are all materials pink?

A:

You probably use another render pipeline. See Section 2.1 to fix that issue.

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

75

Q:

Why can’t my entity spot anything?

A:

Make sure to add Colliders to your entities and check the layer mask, as well as the allowed layer

mask in the Spotting settings. Also check what spotting type you are using. If it is contact, make sure

to add the Contact Collector MonoBehaviours and assign them in the Spotting-Engine!

Also in some cases when using raycasts or view cone spotting, the spotting might be blocked by an

unwanted or misplaced Collider (make sure to assign the correct caster transform in the

Spotting-Engine to not hit the floor for example). This Collider can either be located on your entity or

the target, or somewhere in the scene (some invisible triggers?)!

Q:

Why aren’t the fancy Inspector settings rendered correctly?

A:

This can be caused by other Inspector extensions, like Odin or custom ones inside another asset pack

you are using. There is no general solution for that. You need to find the other Inspector extensions

to proceed with a solution.

Q:

Why are no combat hits applied to the target?

A:

Make sure the target has the Combat Descriptor attached to it and the AiMalgamEntity references it

(checkout the “Debug Info” foldout). Also, when using collision-based hit appliers, make sure to add

Rigidbodies to the target and the hit appliers as well!

Furthermore, check if the “can hit” checkbox of a hit applier or if you are not using that, the

CombatTool is checked during the hit incident.

Q:

Why is my entity’s combat stuck sometimes?

A:

When using animation events to proceed with certain CombatStateProperty setups, you might want

to check if your animation got interrupted at some point, not emitting the desired event that

continues your combat. You need to keep multiple things in mind:

Animation controller and its transitions, the Animation-Actions being called at some time, the

Combat-Actions being called at some time, your CombatTools and if they are allowed to apply the

next CombatStateProperty. The animation parameters might also be reset before they could be

executed in the animator controller.

Q:

I can’t find the AiMalgam classes and namespaces in my code. Where are they?

A:

If you are using assembly definition files, make sure to reference the required ones (see Section 2.1).

Q:

Why are the newly added input ports not selectable and are not displaying correctly?

A:

Should theoretically not happen, but in case it does: Reopening the graph should fix this.

In case this happens, please inform me with your reproduction steps!!

mailto:nikos.assets@gmail.com
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines_1_1_spotting_engine_1_1_ai_malgam_spotter_contact_collector.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_descriptions_1_1_ai_malgam_combat_descriptor.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines_1_1_combat_1_1_ai_malgam_base_combat_hit_applier.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines_1_1_combat_1_1_ai_malgam_base_combat_tool.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_settings_1_1_actions_1_1_ai_malgam_combat_state_properties.html
https://aimalgam.api.demo.nikosassets.com/class_nikos_assets_1_1_ai_malgam_1_1_systems_1_1_engines_1_1_combat_1_1_ai_malgam_base_combat_tool.html

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

76

Q:

My Deciders did succeed or fail even though I expected the other result. What’s going on?

A:

Check the Decider settings in the Inspector and investigate its fields. Also check if your Action

settings validate or invalidate at certain moments, like if the stack limit was reached or your entity

was in a certain State.

Q:

Why is my entity’s movement pattern so weird?

A:

If you are using look at in one Action and actual movement in another that uses the “Translate”

movement method, switch to “Transform Apply” instead and setup the blending settings to smooth

the apply transform movement.

Q:

Why does my entity jitter while moving?

A:

If you set up an animator with root animation movement checked and also provide a NavMeshAgent

and a Rigidbody, make sure that you choose the right “Interpolate” setting (e.g. “None”) in the

Rigidbody and the right “Update Mode” (e.g. “Normal”) in the animator.

Q:

Why do the “mapped” float values not return expected results?

A:

It is important that the raw “input” values you want to convert/ map to are within the pre-defined

min-max input bounds!

Otherwise the math won’t work out.

Q:

Why is my entity moving so slow?

A:

The movement speed of a transform setup with a NavMeshAgent and an animator is different in

some Unity versions, especially starting from 2021.0. You can adjust the speeds on the

“MalgyNavMeshSpeedAdjustment” MonoBehaviour if you work with the existing prefabs and they

happen to include this component. It is also recommended to not set “Animate Physics” as the

“Update Mode” of the animator component!

Q:

Why are some of my connections lost?

A:

First, did you save your progress last time?

Did Unity crash at some point?

Did you temper with connections during play mode?

Did you change any port field or its attribute (contents) in the script files?

Although this should not happen, a possible solution is to reset your commit (when using git) and

deleting the library folder (You can leave the shader cache, or anything related to visuals or audio).

If this happens, please contact me with your reproduction steps so this issue can be terminated!!

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

77

Q:

Why is Unity importing assets forever?

A:

It seems that there is a corrupt ScriptableObject in your project. You can back up your project and

slowly delete the ScriptableObjects for each new start to locate the corrupt one. Also delete the

library every time you want to test the project!

Also keep the asset file names and (global) folder depths as short as possible, since Unity might

have a problem reading too long strings/ filepaths.

If you can’t find your problem here, feel free to contact me and we can extend this section for other

future Developers in need!

6. Changelog

AiMalgam 1.1.1

Fixes:

- Fixed required Engines and Descriptors not gathered and displayed correctly in the Decision

System MonoBehaviour

AiMalgam 1.1.0

Fixes:
- Fixed too slow and jittery movement for the humanoids (Malgy) by adjusting the NavMeshAgent
speeds depending on the Unity version and disabling animated physics
- Animations sometimes got stuck or not play for archers and paladins (Animation controller
fixes)

Changes:
- Now displaying the required Descriptors for certain Conditions in a graph to run correctly on a
decision system
- Improved and modified the manual (FAQ, Changelogs and small adjustments)
- Updated the HelperTools dependency to version 1.1.1

AiMalgam 1.0.2

Changes:
- Removed third-party animations and replaced them with custom ones (walk and run)
- Added the "Third-Party Notice.txt" license file
- Small modifications in the manual pdf

AiMalgam 1.0.1

Fixes:
- Issues in the (multiple) decider pathing and debug display
- Debugging graph not repainting/updating when the selection changed

AiMalgam 1.0.0

- Initial release!

mailto:nikos.assets@gmail.com

Version: 1.1.1 FAQ & Troubleshooting
Support: nikos.assets@gmail.com Please consider leaving a review!

78

7. Contact & Support
If you need any help or have issues regarding this package, feel free to contact me at:
nikos.assets@gmail.com

Store page:

https://assetstore.unity.com/publishers/52812?preview=1

And please consider reviewing this package !

mailto:nikos.assets@gmail.com
mailto:nikos.assets@gmail.com
https://assetstore.unity.com/publishers/52812?preview=1

