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Abstract
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Developing a scalable, performant and maintainable Game Al System, as an extension

for the Unity3D Engine

by Nikodem Grzonkowski

Common artificial intelligence (Al) patterns mostly cover specific areas of Al systems (AIS),
such as either decision-making, action management or data storage not equally well if each
area is implemented in the first place. This oftentimes results in convoluted patterns, lacking
the requirements for a maintainable, performant and scalable generic AIS, as it can be
observed with Al asset packs available at the Unity3D Asset Store. The main subjects of this
thesis are researching, evaluating and solving the discovered issues of established Al patterns
in theory and asset packs in practise, by benchmarking said asset packs with tools provided by
the Unity3D Engine and finally developing a generic AIS prototype as an extension to this

game engine using its designated programming language C#.
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Introduction

1 Introduction

1.1 Prerequisite

An intermediate to advanced expertise in object-oriented programming, specifically in the

programming language C# [Tool-1] is expected by the reader.

Terms such as reflection, inheritance, event-driven architecture (EDA), garbage collection

(GC), generics, etc., are without further explanation mentioned in this thesis.

Knowledge about artificial intelligence, the Unity3D Engine [Tool-2] and video games in

general is recommended but not mandatory.

1.2 Definition of Game Al

Artificial intelligence (Al) in games is bound to hardware and time limitations and therefore
unlike academic Al focuses on the illusion of intelligence, rather than simulating Al as close

to the real world as possible [1].

The term Al nowadays is oftentimes wrongly associated exclusively with neural networks or

machine learning, although it is true that said fields are part of the entire Al spectrum.
1.3 Motivation

Building game Al for a game project from scratch is especially difficult and time consuming.
For that reason, it is recommended to either integrate an existing generic Al system (AIS) or
build one, which is at best compatible with every game genre and is reusable for many game

projects to come.

Investigating the Unity Asset Store, results in many advertised Al asset packs either
specializing on certain game genres or lacking criteria for a generic and performant AIS,

leaving room for improvement, which is the core motivation for this thesis.

1.4 Goal

The goal of this thesis is to emphasize, that popular Al patterns have difficulties to meet the
requirements for a scalable, maintainable and performant generic AIS, unless modified. This
is highlighted by examining and evaluating AI frameworks, as well as Al asset packs
available at the Unity3D Asset Store, finally solving the observed issues by building an AIS
prototype for the Unity3D Engine.
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1.5 Organization

Chapter 2 defines requirements for a generic AIS as a foundation for the research and

evaluation for established Al patterns in Chapter 3 and existing AISs in Chapter 4.

Including the observations (established issues and improvement proposals) from Chapter 3
and 4, the architecture of the AIS prototype is described in Chapter 5. Following with Chapter
6 the built AIS prototype is evaluated to inspect if the requirements are met and the issues
solved, finally summarizing the results in Chapter 7.

1.6 Unity3D Keywords

Keyword Explanation
GameObject Fundamental object in Unity, acting as a container for Components [2].
Prefab Create, configure and store a GameObject as a reusable template asset to

instantiate in a Scene [3].

ScriptableObject | Data container to save large amounts of data, independent of class

instances and Scenes [4].

Component Defines a behavior for a GameObject and acts as a base class for the
MonoBehaviour class [5].

MonoBehaviour | Provides hooks for useful events, such as Start and Update [6].

Scene Assets, representing game levels and environments with their respective
GameObjects [7].

Inspector View and edit properties for almost everything related to the Unity3D

engine, for example GameObjects, Components and in-Editor settings [8].

Asset Store A marketplace for Unity3D developers, offering asset packs created by
other Unity3D developers (hobbyists, professionals, companies, etc.) [9].

Table 1-1: Unity3D Keywords
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2 Requirements

Before any evaluation or development process can begin, first the requirements of a generic

game AIS in the context of this thesis must be defined, which is the subject of this chapter.

2.1 Scalability

The generic AIS should support a wide range of Unity versions, preferably starting with the
minimum supported version in the Asset Store (2018.4.0f1), up to the newest available Unity
long time support (LTS) versions. Furthermore, the generic AIS must at least be compatible

with the following operating systems (OS):

e Windows

e iOS

e macOS
e Android
e Linux

The generic AIS must be free of restrictions for creating custom Al agents and behaviors,
meaning that no pre-defined template is mandatory, such as a (3D) mesh, rig and animation

controller.

Custom Al behavior can be added at any time while working in the Unity project by offering
expansion of the core AIS modules via inheritance. This includes implementing custom
decision-making, action execution and data containers, able to interact with the (modular)

core AIS, if required.

Providing said conditions should theoretically cover the basis of a generic AIS, able to
support Al behaviors for any game genre and agile adaptations during the game Al

development process.
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2.2 Performance

Minimizing performance costs as much as technically possible is a crucial topic for game
development in general. Many game relevant algorithms require execution time for and access
to the central processing unit (CPU), random access memory (RAM) or graphics processing
unit (GPU), including but not limited to:

e Rendering (Textures, Models, Shaders, etc.)
e Animation

e Physics Calculation

e Audio System

o Al

For that reason, the core modules of the generic AIS must provide stable performance levels
for lots of Al entities in a dense area, using as little CPU, GPU and RAM as technically
feasible. Though it is the responsibility of the Al developer to manage the performance costs
for his or her own custom built Al algorithms, the generic AIS must implement efficient and
fast algorithms as a foundation for any custom-built Al behavior.

This concludes, that not every module has to be executed every frame during the lifetime of a

game, but rather when relevant which can be done via an EDA.

2.3 Maintainability

The more complicated the (growing) Al behavior gets, the more important is the overview and
maintainability for it. This leads to a system, which must offer a user experience of high
quality by providing a graphical user interface (GUI) for the AI maintenance, which is at best

self-explanatory in terms of navigation, interaction and naming of functionalities.

Potential actions and decisions an Al entity can make are to be visually displayed in a GUI,
which preferably offers a debugging system, showcasing the current decisions made by an Al
instance at runtime. Furthermore, adding, removing and modifying the Al behavior within the

Unity project must be fast and easy to access for the Al designer and developer.

The same rules apply to creating custom from the generic AIS inherited Al code by providing
options to automatically generate scripts form pre-defined template files, saving time writing

boilerplate code.

Related to the scalability requirement, no limitations or exclusions in the form of models, rigs,

animations, scripts, etc. should be a consequence of integrating and using this generic AIS.
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3 Research and Evaluation of AI Patterns

This chapter covers the research and evaluation of established Al patterns based on the
requirements highlighted in Chapter 2, focusing rather on the application of the patterns for a
generic AIS, than the in-depth explanation.

3.1 Finite State Machines

“Finite-state machines are a model of computation with limited amount of memory known as
a state. Each machine has only a finite number of possible states (for instance, wander or
patrol). A transition function determines how the state changes over time, according to the
inputs to the finite-state machine” [10, p. 509]

Furthermore, a state or state transition can group and return a collection of actions for the

entry, loop and exit of the state to alter the environment of the game. [11]

Figure 3-1 pictures an example for a finite state machine (FSM), describing an Al behavior
for an agent that searches, follows and attacks an enemy visualized with states and their

respective transitions.

Spot Lost Enemy Escaped

Enemy Spotted Enemy Reached

nemy Defeated

Figure 3-1: Simple FSM Example

Adding a state requires to setup a transition to the next desired state, hence it is not possible to
reach any other state from the current state, without a pre-defined transition. Considering this
special case, the FSM growth can be described as m*n total transitions, where m = transitions
per state and n = the state amount. For the worst-case scenario, where every in the FSM
existing state must be reachable from every other state (m = n), the growth can be described in
the exponential Big O Notation O(n?) [12]. While this is not likely to happen if an experienced
and efficient Al designer works with a FSM, this maintainability issue persists for
sophisticated Al behaviors, which require lots of states and transitions. For that reason, the
requirement maintainability defined in Section 2.3 is not met for a flat FSM.
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Using a hierarchical FSM is an improvement but does not solve this issue on a layer basis,
since each layer represents a flat FSM.

The performance of FSMs is O(1) in memory and O(m) per time [11, p. 320], where m =
transitions per state, resulting in a linear growth in performance costs, which is acceptable in

regard to the performance requirement mentioned in Section 2.2.

Since the actions are accessible directly on the states, the action execution is quite efficient,
only in the case of the transition checks being called separately. Other than that, mapping and
injecting runtime and action specific data is not defined in the FSM architecture but is

mandatory for the scalability requirement as stated in Section 2.1.

Since the FSM pattern lacks the maintainability and scalability requirements, it is not
recommended to be implemented in a generic AIS. The upside of using FSMs though, is the
ease of debugging an AI agent, since the current active state is clearly visualized and
potentially easy to trace. Considering this, a state which shows the Al agent’s current active
behavior and potentially having an impact in the next decision cycle, is a useful feature for a

generic AIS.

3.2 Decision Trees

“A decision tree is made up of connected decision points, also called choices or nodes. The
tree has a starting decision, its root. For each decision, starting from the root, one of a set of

options is chosen. These choices lead either to further decision, or to a final action”
[11, p. 300]

The branching of decision trees is built either binary, where a node can only subdivide in at
max two other nodes (see Figure 3-2) or not limited at all (see Figure 3-3) [11].

Figure 3-2: Simple Binary Decision Tree Example

10
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Figure 3-3: Simple Non-Limited Decision Tree Example

For maintainability and memory reasons it is not recommended to implement a binary
decision tree, since more branch nodes must be created to reach a leaf node, compared to a
non-limited decision tree. Although the advantages of a binary tree being the hierarchical
consistency and a more balanced decision tree, resulting in less conditional checks and better
performance. On the other hand, a binary decision tree can also be built using a non-limited

decision tree implementation, leaving both options to be chosen by the Al designer.

The definition of a balanced tree describes that the tree has about the same number of leaves
for each branch. The performance of a balanced tree is at best O(log(n)), where
n = the number of decision nodes in the tree. At worst a (balanced) decision tree traverses

through each node and has a performance cost of O(n) [11, p. 308].

Considering this, the performance requirement defined in Section 2.2 is met for the
decision-making architecture, since O(log(n)) is the second best growth in terms of saving
performance, besides the constant O(1) [12]. As for the action execution, the decision tree
pattern must always traverse through its branches in order to execute them, which is an
inefficient implementation, as it does not provide the single responsibility principle [13]. This
can be avoided by separating decision-making from action execution, by notifying action
manager classes with the resulting leaf nodes and thus prevent redundant traversals, providing
a modular and scalable architecture. Therefore, the scalability requirement from Section 2.1

is not met for this pattern.

Unlike the FSM pattern highlighted in Section 3.1, a decision tree grows linear O(n) in terms
of its branch and leaf nodes, since it is not forced to act from its last resulted leaf node and
additionally is always run from its root node. For that reason, the decision tree pattern is easy
to overview and maintain and therefore meets the maintainability requirement defined in
Section 2.2.

In conclusion, the decision tree pattern provides a valid decision-making algorithm for a

generic AIS, as long as it is separated from the action management and data injection.

11
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3.3 Behavior Trees
The behavior tree pattern, as illustrated in Figure 3-4 consists of four general task types [11]:

e Composites
e Conditions
e Decorators
e Actions

Decorator (Repeater)

Y

Selector

£ Y
Condition Action ﬂ;@*

Y k.

Condition Actien Action

Figure 3-4: Simple Behavior Tree Example

Composite tasks are representative for branches in the behavior tree and keep track of child
tasks, which in return can also be a task of type composite, condition, decorator, or action

[11].

Common composite tasks are selectors and sequences. Both composite types run their
children one after another and decide if they should continue or stop, depending on the result
of the last run child task. A selector will immediately stop and return a successful result, once
any child node finishes with success, unlike a sequence composite which invalidates and stops,
once a failed child task is found. There are a variety of other composite tasks, that handle the
execution of their underlying children and it is possible to implement a custom composite task

via inheritance.

Both condition and action tasks are found in the leaf nodes of the behavior tree. A condition
task tests some properties of the data it is given and returns a result, in which the parent
composite task can decide how to proceed. An action task alters the state of the game, by for

example executing an animation or moving the designated agent to its desired location.

12
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The decorator task behaves like a wrapper class for a single child task, with the purpose of
modifying it in some shape or form. As demonstrated in Figure 3-4, a simple example for a
decorator class is a repeater, which repeats the underlying child until a certain interrupt or fail

condition is met.

Behavior trees share a similar structure to decision trees and therefore have the same
performance costs for best and worst-case scenarios, which are O(log(n)) at best and O(n) at
worst (see Section 3.2) [11, p. 346]. Another commonality with the decision tree is, that the
behavior tree pattern always must traverse through its branch nodes, in order to execute an
action task, thus wasting performance. As stated in Section 3.2, it is a more performant and
modular approach to separate action management and data injection from the decision-making

process.

The behavior tree pattern offers a modular and expandable approach for custom task creation
via inheritance but similar to the decision tree pattern is convoluted regarding action execution
and decision-making. As a result, this pattern does meet the performance and scalability
requirements (see Section 2.1 and 2.2) for the decision-making system, but not for action

execution and data management.

Furthermore, it is an ineffective approach to use condition tasks as leaf nodes to handle the
traversal of a tree, forcing the Al designer to use a sequence composite task with a condition
task and another composite task as a child to prevent the traversal of a sub tree. As a result,
redundant nodes are added to the tree, which could be avoided by providing an option to
attach a condition task to any task type. Solving this inconvenience, this Al pattern meets the

maintainability requirement defined in Section 2.3.

3.4 Rule-Based Systems

The rule-based system (RBS) contains a database, that offers knowledge of the game world to
the Al and a set of if-then rules, that lead to the desired decision [11].

RBSs offer multiple ways to interpret valid and invalid condition results, by using rule
arbitration, adding flexibility to the decision-making process [11]. For instance, it may be the
case to pick only the first valid result of a rule set (first applicable) or collect and execute all
valid results. In addition, it is possible to cache the last recently used ruleset to save time in

the next decision cycle.

13
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As for the performance costs, the RBS has a growth of O(nm), where n = items in the
database and m = clauses to check [11, p. 447], leading to O(n?) at worst for n = m or O(n) at
best. The worst case can be avoided, if the required data is requested directly and not searched,
resulting in a similar performance cost growth to the FSM pattern (see Section 3.1) and

therefore meeting the performance requirement defined in Section 2.2.

The scalability requirement (see Section 2.1) of the RBS can be achieved, by adding rules
to rulesets as custom encapsulated objects, which contain an overwritable method returning
either true or false. As for the database and data injection, it is recommended to use a modular
approach and define specific databases for rule objects, rather than a single database that
stores all information, as it is further established in Section 3.7. Additionally, actions must be
built as separate encapsulated objects as well, to be dynamically assigned to rule or ruleset
objects, preventing a hardcoded architecture [13].

The maintainability requirement outlined in Section 2.3 is not met for this pattern, due to
the fact that the rules are stored in a flat list and no visual representation of an RBS is
provided by default.

“They remain a fairly uncommon approach, partly because similar behaviors can almost

always be achieved in a simpler way using decision trees or state machines” [11, p. 431]

In conclusion, this Al pattern lacks the maintainability requirement and is worse in terms of
performance compared to the patterns in Section 3.2 and 3.3, but offers an interesting
approach to interpret decision results using the rule arbitration feature, which potentially can
be combined with other Al patterns.

3.5 Goal Oriented Behavior

“Goal-oriented behavior is a blanket term that covers any technique taking into account

goals or desires.” [11, p. 406]

The goal-oriented behavior (GOB) is not in particular a decision-making algorithm, but rather

an approach in how an agent uses the decision system to achieve its pre-defined goals.

For example, an agent needs to stay saturated and hydrated, while trying to reach a faraway
destination point. Those goals/desires are represented as hunger, thirst and keep moving, each
stored as a number (integer, or float). For every desire, certain actions are defined that either

drain or satisfy said desires, for instance:

e Move to destination action = -2 keep moving, +1 hunger, +2 thirst
e Drink from bottle action = +1 keep moving, -4 thirst
e Eat food action =42 keep moving, +1 thirst, -4 hunger

14
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Depending on the desire’s priority and its satisfaction level, the next decision may stop a
running action and start another one, which fulfills the most needed desire, maintaining the

balance for all desires.

In conclusion the GOB neither validates nor invalidates the requirements defined in

Chapter 2, since it is built on top of an existing Al pattern.

3.6 Fuzzy Logic

“Fuzzy logic [...], enables a computer to reason about linguistic terms and rules in a way
similar to humans. Concepts like “‘far” or “slightly” are not represented by discrete intervals,

but by fuzzy sets, enabling values to be assigned to sets to a matter of a degree — a process
called fuzzification™ [1, p. 416]

Since the basic fuzzy logic pattern does not represent any (hierarchical) decision management,
it is not recommended as a top-level Al pattern, but rather as a useful extension to an existing
Al pattern to simulate intuitive decision-making. The fuzzy logic pattern is basically a more
sophisticated version of the RBS described in Section 3.4 but due to its specialization does
not meet the requirements defined in Chapter 2.

3.7 Blackboards

“A blackboard system isn’t a decision making system in its own right. It is a mechanism for

coordinating the actions of several decision makers.” [11, p. 461]

Actions that need to be performed by an agent oftentimes need information of the current
environment, such as other agents, world objects or the agent it is running on. For example, an
agent that needs to flee to designated destination points on the world map with obstacles and
chasers to avoid, which only exist and change at runtime.

Blackboards describe a wrapper class, which contains all necessary information required by
the executing action. During the actions lifetime the blackboards are managed by a designated
class and fed into the action as a parameter. The action then has the option to read or modify
the contents of the acquired blackboard.

Using a single (global) blackboard for all possible action types results in poor scalability,
since no inheritance is provided and in addition not every referenced data type is required by
every action type, wasting memory and most likely performance as well [13]. This leads to an
implementation form that requires a specific (local) blackboard type, mapped to its

corresponding action type, contained and handled within a specific manager class.

15
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This is complicated to build but solves the scalability issue and offers the option to add
custom action and blackboard types to the AIS. On the other hand, the negative aspect of this
approach, is that the Al developer is forced to create 3 separate classes (action, blackboard,
manager) for a new action type, as a result decreasing the maintainability for Al programmers.
To solve this issue, a script generation tool must be offered by the AIS, creating the dependent

classes from template files, which contain the relevant boilerplate code.

Since the blackboard architecture primarily stores data, no significant performance costs are
produced. Building a local blackboard architecture for (action) data-injection in this modified
form meets the scalability requirement (see Section 2.1), but in return adds difficulties for
the maintainability requirement (see Section 2.3). Although, this cannot be avoided without

losing scalability, since the amount of action types for any game is unknown.

3.8 Action Management

The action management pattern examined in this section describes a system, which handles
the execution and lifetime of actions and is unlike the previous discussed patterns not
particularly related to AI or decision-making and therefore represents an entire separate

module with the specific task of action management only.

Some actions are more sophisticated, than a single function call and oftentimes need to repeat

for an indefinite time, requiring a manager class, which offers mechanics such as:

e Detecting an actions state in its current lifecycle and reacting to it
o Running, paused, initializing, finished

e Interrupting a running action

e Adding and removing actions

e Order of action execution

Looping through each action in the action manager costs O(n) in performance and memory,
where n = the amount of actions to execute, assuming every action costs O(1) in performance
and memory. Since this pattern does not cover any decision-making algorithms, it must be
combined with another pattern, such as the ones mentioned in Section 3.1 through 3.4.

This results in not all possible actions of an Al behavior being stored in an action managers
list, but rather added or removed dynamically depending on the last decision result.
Considering this and that the most efficient performance cost growth of the examined
decision-making pattern is O(log(n)) at best and O(n) at worst, this pattern meets the
performance requirement as of Section 2.2.

16
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The data-injection is not handled in the action manager pattern but is required for some
actions that need to change the world state, based on the world input. Combining this pattern
with the blackboard pattern mentioned in Section 3.7 would solve this issue by injecting a
blackboard into the current executing action.

To find the relevant blackboard for the respective action, a specialized action manager must
be provided, which is restricted to handle only specific (base) actions of a certain type, that in

return only accept a compatible blackboard type.

As a standalone pattern the maintainability requirement (see Section 2.3) can neither be
validated or invalidated, though if combined with the blackboard pattern, a code generation
tool must be provided for the Al developers to prevent writing the same boilerplate code for
each new action type.

The scalability requirement defined in Section 2.1 can be achieved by providing

overwritable methods and encapsulated classes for actions, action managers and blackboards.

3.9 Scheduling

“A scheduling system manages which tasks get to run when. It copes with different execution
frequencies and different task durations.” [11, p. 804]

The scheduling pattern works with a total time budget, which needs to be distributed across
the next running actions in addition to the (different) frequencies the actions can be called [11].
Basically, a scheduler is a more sophisticated version of an action manager and similar to it is

not related to Al and decision-making in particular.

Since the scheduling pattern offers more functionalities than the action manager pattern, more
overhead in calculation is generated, but nevertheless outputs the same performance and
memory cost growth O(n), where n = action amount to execute. What is done better in
comparison to the action manager is that the frequency between each action call can be set in
a way that the actions are not called every frame and therefore performance is saved. Giving
certain actions more time to perform per frame than others is crucial for a generic AIS as well,
since not all actions share the same performance costs, for instance animation, pathfinding or
spotting actions. Therefore, the performance requirement defined in Section 2.1 is met for
this pattern even more efficiently, than the action manager examined in the previous
Section 3.8.

Provided that the scheduling pattern is combined with a data-injection and decision-making
pattern, it shares the same requirement achievements for scalability and maintainability

(see Section 2.1 and 2.3) as the action manager.
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3.10 Conclusion

In conclusion, there is no (Al) pattern, that meets all requirements defined in Chapter 2 for a
generic AIS equally well. It is rather a combination of multiple (modified) patterns to form
a generic AIS, such as the action manager or scheduler for action handling (see Section 3.8
and 3.9), the decision tree or behavior tree for decision-making (see Section 3.2 and 3.3) and

finally the blackboard pattern (see Section 3.7) for data-injection.

Usually, agents in games maintain a decision for a certain amount of time, like chasing
another agent until a certain state change occurs. Considering this, the decision-making
pattern should offer multiple implementation forms for calling the decision-making algorithm,
since it is not mentioned in the investigated patterns starting from Section 3.1 through 3.4 in
how often the decision-making algorithm must be executed per frame or any other time
interval. To solve this unclarity, a special scheduler (or action manager) must be built, that
acts as a wrapper class for decision-making calls only, offering an EDA or polling technique
to execute decisions.

Both polling and the EDA have pros and cons depending on the use case. For instance, it is
not necessary to check if a certain object exists every frame, but to wait until the object emits
an event once it appears in the game world. On the other hand, there might be a use case
where an agent needs to follow a moving target in a fluent manner and cannot wait until the
target emits a position changed event, which in addition would be less efficient performance

wise in any case [11].

4 Evaluation of AI Asset Packs

This chapter covers the evaluation of Al asset packs available at the Unity3D Asset Store,
based on the requirements defined in Chapter 2 in addition to the observations made in
Chapter 3.

First, a curated list of the AISs available at the Unity3D Asset Store is created, since not every
AIS is relevant for this thesis, for instance genre specific AISs such as racing or flight game
Al The targeted AlSs are the ones, which claim to offer a generic architecture for every game
genre, as well as customizable and expandable Al logic.

Al asset packs listed on the Asset Store are found with search terms such as “AI” [9] or
“Behavior” [14] and can be ordered either by relevance, popularity, rating, most favored,
published date, name, price or recently updated. While it is unknown how the order by
algorithm works in detail, the most important ones for this evaluation are relevance,

popularity and rating.
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Following five Al systems are chosen and further examined in this thesis:

[15]
[16]
[17]
[18]
[19]

Due to the limited amount of time for this thesis, not all generic AISs available at the Unity
Asset Store are evaluated. Systems worth mentioning, which could not be included in this
thesis are Ultimate Al System [20], Behavior (Game Creator 1) [21], Dynamic Al [22], Al
Behavior [23] and Breadcrumb Ai [24].

Moreover, the chosen AISs for evaluation are explained briefly in their functionality and code,
due to it being out of scope for this thesis and in addition to all relevant information about the

Al asset packs being located on their respective store page and documentation.

Each evaluated Al asset pack may not exist in the Asset Store, or may change its contents
(description, documentation and the AIS itself) at a future time. In that case the evaluated
asset packs can be found in the provided separate Unity benchmark test project, located within
the USB device. Furthermore, the minimum supported Unity version in the Asset Store
(2018.4.011), as well as other unknown subjects regarding the Unity3D Engine will likely
change in the future.
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4.1 Evaluation Process

The evaluation process steps applied to the chosen Al asset packs are defined as follows:

1. Integrating the Al asset pack into a for the Al evaluation designated Unity3D project.
2. Examining the documentation and sample Scenes to understand the overall structure,
OS and Unity version compatibilities, usage of features, as well as a brief overview of

its architecture.

3. Comparing the decision-making, action handling and data management algorithms of
the AIS to the in Chapter 3 investigated Al patterns and evaluating their performance,
maintainability and scalability based on the requirements described in Chapter 2.

4. Testing the Al asset pack with custom code and use cases, to either confirm or deny the
established requirements with the following steps:

a.
b.

Create a separate (encapsulated) Unity Scene for the testing environment.
Create custom actions, which manipulate the runtime agent and the game world
in some manner.

Create custom conditions to randomly succeed or fail.

Create custom data-containers for the custom actions and conditions to read
from and write to.

Build a testing Al behavior with the custom created actions, conditions and data
containers.

Benchmark multiple agents in one Scene at once for 30 seconds, each with 16
potential actions to reach, while using Unity’s Profiler tool [25] as a
measurement. Starting with 1, afterwards 10, then 100 and finally 1,000 agents
at once, always counting the total decision and action execution count during the
running benchmark tests.

To evaluate all AISs equally, the custom actions, data-containers and conditions reference the

same implementation across all evaluated AISs. Moreover, all for the test irrelevant

applications and Unity Editor windows, which could temper with the benchmark results are

disposed of. Additionally, the Scene setup for each test is equal for all AISs in its structure

and focuses on the Al performance costs only, meaning all redundant calculations, such as

animations and renderings are excluded from the measurements as far as possible.

The hosting hardware, which benchmarks the AISs has following properties:

e OS:

e CPU:
e RAM:
e GPU:

Microsoft Windows 10 Pro (10.0.19043)

Intel® Core™ i7-7700HQ, Driver version (10.0.19041.546)
16GB, DDR4

NVIDIA GeForce GTX 1070, Driver version (471.96)

The chosen Unity3D version for the testing project relevant for step 1 of the evaluation
process is of version 2020.3.19f1 LTS.
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The benchmarking action and condition classes perform a square root calculation over the
same value, iterating over it 100 times to simulate an expensive operation [26]. In C# and

Unity this can be achieved with the code snipped shown in Listing 4-1.

i < 100; i++)

Mathf.Sqrt(fé);

Listing 4-1: Performance Heavy Method Simulation

To achieve a random condition pass of 50% in C# and Unity, a floating-point value of 0.5 is

checked against a random generated floating-point number between 0 and 1.

To test the instance-based custom data injection per agent, a wrapper class is created (see
Listing 4-2), containing primitive values which are tempered with during the Scene at runtime
by the custom condition and action classes. This is achieved by defining integer values in the
data container which get incremented by the accessing (condition or action) classes and is
observed in Unity’s Inspector when agents are selected individually, supported by the string

values to visualize and confirm the uniqueness of the current selected agent.

tainer

actionsCounter
actionsName "y

CustomsharedDatac nent customsharedDataComponent;

Listing 4-2: Custom Data Container

The CustomSharedDataComponent field is a reference to a Component, shared across all
agent instances and stores the total global action and decision execution amount to oppose the
performance costs to the total executions made.

If the AIS architecture enables it, the decision-making process is executed separately from the
action execution in order to illustrate the contrast of time and memory consumed between the
action and decision-making executions. Furthermore, the Al behavior setup for the 16
possible actions as per step 4.e and 4.f must be built as balanced as possible to ensure the
same testing environment for every Al asset pack and to simulate a well-designed Al behavior,

as mentioned in Section 3.2.
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As per the Unity manual [25], the evaluation relevant profiler modules are briefly explained in
Table 4-1.

Profiler Module | Category Description

CPU Scripts How much time milli seconds (ms) your

application spends on running scripts.

Memory Object Count The number of native object instances in your
(0C) application.

Memory GC Used Memory The amount of memory used by the GC heap.
(GCUM)

Memory GC Allocated in Frame | The amount of memory allocated per frame on
(GCAF) the GC heap.

Table 4-1: Profile Moduler Explanation

The recording window for each benchmark test is restricted to 600 frames, due to Unity’s
Profiler recording limit, in addition to its caused overhead for the memory and CPU hardware
components. It is also worth mentioning, that the Unity Editor itself generates overhead for
each module and category, especially visible for test cases with a small number of agents and
method calls. All evaluation results, including the Profiler recordings are located in the
benchmarking Unity project, saved on the provided USB device.

4.2 I

Evaluation process: Step 1

The integration of the asset pack |  }IIEEEEEE (BD) version 1.7 into the Unity testing
project as mentioned in step 1 of the evaluation process works with no issues.

Evaluation process: Step 2 & 3

Based on the store page description [15] and documentation [27] BD is an AIS mainly built
upon the behavior tree decision-making system as examined in Section 3.3.

Furthermore, it seems like there are no limitations regarding the supported OSs, only that
special handling is required for UWP apps. The minimum required Unity version is 2017.4.1
and with that is below the minimum possible supported Unity version on the Asset Store
(2018.4.011).
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Unfortunately, as of the time this thesis is written, the AIS development studio does not
provide sample (tutorial) files from their website, nor in the main Al asset pack for some
reason. Although this being a minor inconvenience, the documentation and video tutorial

series are explaining the usage of this Al asset pack clearly.

As 1illustrated in Figure 4-1 BD uses a node-based graph user interface (UI) in the Unity
Editor to build Al behaviors in.

Figure 4-1: BD Graph UI Excerpt

The behavior tree is placed on a GameObject either as an instance in a Scene or as a Prefab,
while the nodes in the behavior tree are stored internally and not as external and editable files
in the Unity project. This can both be seen as an upside and downside, because an Al designer
might want to reuse setting files in other trees without duplicating them, while on the other
hand the project has fewer binary files to maintain and persist.

The graph editor Ul and the accessibility to the most relevant functionalities, such as creating
and maintain task nodes and data is implemented clearly, which results in a good user
experience and maintainability. BD offers a large amount of action type tasks, which do
simple operations, for instance fetching a primitive C# value from a component. This granular
setup might be helpful to build up a more sophisticated structure, but also fills up too much
space in the graph Ul and in return equals rather a visual scripting tool, than an AIS in the first
place. On the other hand, this can be avoided with custom built actions, which do all

necessary operations to achieve a larger less granular goal.

As already detected BD uses the behavior tree decision-making algorithm as the main
architecture and visual display. In Section 3.3 the requirements defined in Chapter 2 are
discussed with the conclusion, that the behavior tree pattern meets the requirements for
decision-making but not action management or data-injection and in addition partly has minor

issues with the maintainability in regard to the node amount using condition nodes.
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For data-management BD uses a custom-built architecture to dynamically add an inheritable
object called SharedVariable. Most primitive C# types, as well as the most relevant Unity
types are already prepared as SharedVariables by BD, for example the SharedString
representing the string type. Said SharedVariables offer different possibilities to read the
desired object type from, such as a constant or assigned value from another source.

All for the Al behavior necessary SharedVariables can be added, removed and maintained in
a designated list for the relevant behavior tree. Assuming the SharedVariables are cached and
don’t have to be found by name (or hash) each time they are requested, it is a valid
implementation to support custom data in amount and types. In that regard it can be compared
to the blackboard architecture described in Section 3.7, although it is not injected in the

actions as a parameter but rather used as a locally stored reference in a task.
Evaluation Process: Step 4

Creating custom data containers, actions and conditionals as per step 4 of the evaluation
process works flawlessly from the Al programmer’s perspective, due to the provided template
files and automatic code generation features. After compilation the class types appear in the

graph editor UI as a (node) creation option.

To setup the test scenario as described in step 4.e, the behavior tree graph including the

custom action and condition tasks is built, as pictured in Figure 4-2 (excerpt) and Figure 4-3

(full overview).

Figure 4-2: BD Benchmark Testing Graph Fragment
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Figure 4-3: BD Benchmark Testing Graph Entire View

While building the graph, it is apparent that connecting nodes separated at a greater distance
via the dragging connection functionality is tedious. A feature, such as connecting a node via
direct reference (name or id) or via a picking option from a list of potential nodes available in
the graph might solve this issue. Furthermore, the editing of multiple nodes of same type at

once is prohibited, which is unfortunate regarding the Al setup time and general usability.

The graph Figure 4-4 displays the action, decision and total execution amount for each test
case interval defined in step 4.f. It is apparent, that the decision calls dominate the action calls,
since the behavior tree always must be traversed to execute an action and therefore add
unnecessary overhead and waste performance, as stated in Section 3.3. Furthermore, it is

visible that the total calls stagnate relative to the by the factor 10 increasing agent amounts.
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6,000,000
5,000,000
4,000,000
3,000,000
2,000,000

1,000,000

O —0
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Figure 4-4: BD Benchmark Method Calls for 30s
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Figure 4-5 visualizes the median CPU time usage of all called (Al) scripts per frame. The
growth of the script execution time grows nearly linear to the increasing number of agents,
considering the agent amount for each interval is multiplied by 10. For the extreme case of
1,000 agents calculated at once, the median script execution time per frame is roughly 30ms,
which would lead to a stuttering gameplay experience in combination with other game

relevant renderings and calculations.

35
30
25
20
15

10

1 Agent 10 Agents 100 Agents 1,000 Agents

==@==CPU: Median Script Execution Time per Frame (ms)

Figure 4-5: BD Benchmark CPU Usage

Table 4-2 illustrates the memory usage provided by the Unity3D Profiler, growing about
linear relative to the increasing agent amount (factor 10) but not relative to the total calls
amount displayed in Figure 4-4. Based on this, it is assumed that the increasing memory is
rather tied to the GameObject count, than the executing scripts for this AIS.

Unlike the GCAF category, GCUM highlights a stair like growth, especially visible when
calculating 10 to 1,000 agents at once, as it can be seen in Figure 4-6. Looking at the category
OC, it is evident that the Unity3D Engine creates a base overhead of ca. 5,700 native objects
and that a single added agent GameObject roughly represents 3-4 native objects based on the
data presented.
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Memory: GCAF Memory: GCUM Memory: OC
1 Agent 1.7KB 16.IMB 5,710
10 Agents 11.4KB 15.5MB - 17.6MB 5,740
100 Agents | 110KB 23MB - 26.9MB 6,100
1,000 Agents | IMB 110.1MB - 130.1MB 9,700

Table 4-2: BD Benchmark Memory Usage per Frame

Figure 4-6: BD Memory Profiler Excerpt (1,000 Agents)

Summarizing the benchmark test results, this asset pack provides a well implemented memory
management system, since the memory usage grows linear to the increasing agent amount and
no significant memory leaks can be observed. As for the script execution time, the caused
overhead by the decision-making algorithms proves the ineffectiveness of the decision tree
and behavior tree pattern in regard to the action execution and therefore does not meet the
performance requirements of Section 2.2. Furthermore, the Al developer must proceed with
caution when building a Scene calculating lots of agents at once to prevent a low frames per
second (FPS) rate. Other than that, the scalability and maintainability as of Section 2.1 and
2.3 are provided by this AIS.
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4.3 I

Evaluation Process: Step 1

The first step, integrating the AIS _(EA3) version 3.0.0 as mentioned in the

evaluation process step 1 causes no issues and the example Scenes are working as described.
Evaluation Process: Step 2 & 3

The minimum required Unity version by this AIS is 2018.4.27 and with that almost covers the
minimum supported Unity version of the Asset Store. Furthermore, no excluded OSs can be

found in the documentation [28] and store page [16].

Based on the documentation and sample Scenes it is not possible to detect a designated Al
pattern, other than it might be an RBS as mentioned in Section 3.4. It is not clear how custom
actions, conditions and data containers can be implemented into or expanded from this asset

pack.

The Al behavior settings for an Al agent are located within one MonoBehavior class as it can
be seen in Figure 4-7. Special MonoBehavior scripts are the only interface for the Al designer
to maintain the Al behaviors in, thus lacking a tool to overview the Al behavior decisions and
actions visually. Furthermore, the behavior data and behavior implementation are strictly
defined within the core system and not built in a modular, but hardcoded manner and

therefore providing an unsatisfactory code architecture [13].
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Figure 4-7: EA3 Al Behavior Setup

28



Evaluation of AI Asset Packs

Inspecting the code as shown in Listing 4-3 reveals the assumption of this AIS being an RBS
to be true and as discussed in Section 3.4 does not meet the requirements for a generic AIS
(see Chapter 2).

(UseDeactivateDelayRef == YesOrNo.Yes &% DeactivateTimer »>= DeactivateDelay |

Deactivate();

(!Rendererl.isvisible && !Renderer2.isvisible && !Renderer3.isvisible && Tot
DeactivateTimer += Time.deltaTime;
(UseDeactivateDelayRef == YesOrNo.Yes &% DeactivateTimer »>= DeactivateDelay |

Deactivate();

(!Rendereri.isvisible && !Renderer2.isvisible && !Renderer3.isvisible && !Re
DeactivateTimer += Time.deltaTime;
(UseDeactivateDelayRef == YesOrNo.Yes &% DeactivateTimer »>= DeactivateDelay |

Deactivate();

(optimizedstateRef == Optimizedstate.Active)

(TotalLoDsRef == TotallLODsEnum.Two)

(Rendereri.isvisible || Renderer2.isVisible)

Listing 4-3: EA3 RBS Code Snippet
Evaluation Process: Step 4

Since this AIS does not provide expandability, it is not possible to create the test cases
described in the evaluation process step 4. For that reason, this AIS does not pass the test

cases, nor the requirements from Chapter 2.
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4.4 I

Evaluation Process: Step 1

The integration of [l (RVSAI) version 1.5 in the test project and the sample Scenes
are working as described. Based on the store page [17] the minimum required Unity version is
2018.3.14 and no excluded OS platforms are to be found in the documentation [29].

Evaluation Process: Step 2 & 3

After creating a simple testing behavior as illustrated in Figure 4-9, it is apparent that this AIS
implements a (binary) decision tree pattern, which is examined in Section 3.2. Unlike how it
is stated in the manual to be based on the behavior tree pattern. Examining the manual excerpt
Figure 4-8, as well as the test graph from Figure 4-9 indicates, that the tree structure used in

this AIS combines the branch and leaf nodes to one shared node.

Stage node

Node name AiUtility

Input port

Qutput port

AiUtility buttons from left: add/change AiTask, move AiUtility up
move AiUtility down remove AiUtility

Figure 4-8: RVSAI Node Explanation [29]

Condition Node

- DebuglogTask P

Condition Node (ROOT)

@®  Bool Scorer

Condition Node

Figure 4-9: RVSAI Test Al Setup
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The test graph as shown in Figure 4-9 results in a persistent Prefab file with the structure
displayed in Figure 4-10. Since the graph and its nodes visualize settings for Al behavior and
not instantiation of runtime GameObjects, it would have been more efficient to use

ScriptableObjects instead for consistency and memory reasons, due to less overhead being

generated by ScritpableObjects [4].

Figure 4-10: RVSAI Test Graph Prefab

As already discussed in Section 3.2, this Al pattern meets requirements for maintainability
and performance regarding the decision-making procedure but not the action handling and
data management. This AIS handles the action execution similar to the classic decision tree

pattern and thus has to traverse the tree each time to execute an action.

RVSALI uses graph variables for global data similar to the (global) blackboard pattern
described in Section 3.7 and is stored as a MonoBehavior in the graph Prefab, visualized in
Figure 4-11. As already discussed in Section 3.7, it is recommended to build a specific (local)

blackboard for modularity and scalability reasons.

Ai Variables (Script)

Vectors 2
Vectors 3

Unity Objects

Figure 4-11: RVSAI Global Variables
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Upon investigating the code, where and how the variables are requested, it is revealed that the
required list item always must be fetched via its description name (see Listing 4-4). This is
especially critical for performance reasons. For example, if 100 bool variables are stored
within the same list, they must be fetched by name (string comparison) every time, at worst

every frame and after n (in this example 100) comparisons.

VariableBoolProvider :

Not public methods

# Frequently called [2]0+1 usage

rovideData() => aiGraph.GraphAivariables.GetBool(boolName);

Listing 4-4: RVSAI Variable Bool Provider

For runtime and instance-based data RVSAI uses a context provider (see Listing 4-5), which
can be inherited and specified for custom needs and is similar to the specified and more

efficient (local) blackboard pattern.

summary

summary

T ContextAs<T>() - => Context

Listing 4-5: RVSAI Type Conversion
Evaluation Process: Step 4

RVSALI offers different approaches for Al decision-making and action execution with load
balancing. While load balancing is active, the execution calls are limited to guarantee a stable
and high FPS rate in order to prevent game stuttering. This configuration setup is a
well-designed feature by RVSALI if lots of less important Al agents need to be calculated in
the same Scene, while keeping the overall game experience as immersive and stable as

possible. This setup (see Figure 4-12) is included in the benchmark tests.
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References

Figure 4-12: RVSAI Load Balanced AI Setup

Since the execution calls are reduced drastically during the load balancing setup, another
configuration setup without RVSAI load balancing is included for the benchmark test, as

shown in Figure 4-13.

Open graph

References

Figure 4-13: RVSAI Non-Load Balanced Al Setup

The manual explains that expandability for custom data and logic is granted for the Al
developer with the help of script templates accessible via the context menu in the Unity
project view [29].
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Figure 4-14 represents the balanced decision tree using the custom scripts created for the

benchmark test as required by step 4 of the evaluation process.

Figure 4-14: RVSAI Benchmark Test AI Behavior

The first benchmark tests use the non-load balancing setup from Figure 4-13 to examine how

this asset pack behaves when maximum output (executions) is the highest priority.

Since it is not possible for the classic decision tree pattern to separate the decision-making
system from the action execution, as stated in Section 3.2, the decision calls are significantly
higher than the action calls (see Figure 4-15) and thus performance is wasted for redundant
calls. Although the growth of total calls per agents does appear to be linear in this graph
visually, it is not the case statistically due to the multiplication of agents by the factor 10 for
each new test interval (see step 4.f of the evaluation process).
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Figure 4-15: RVSAI Benchmark Method Calls for 30s (Non-Load Balanced)

Figure 4-16 showcases, that the median script execution time in ms per frame expands linear
relative to the increasing agent amount by the factor 10, with the highest execution time
being about 14ms enabling a smooth gameplay experience even in an extreme case of 1,000

calculated agents at once.
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Figure 4-16: RVSAI Benchmark CPU Usage (Non-Load Balanced)
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Similar to the memory Profiler results in Section 4.2, a stair like pattern can be observed
showcasing how the GC is handled by this AIS and the Unity3D Engine. Furthermore, it is
evident that the values of the categories GCUM and GCAF roughly grow linear in relation to
the (times 10) increasing agent amount (see Table 4-3). What stands out, is the fact that the
OC category of the memory module is exceptionally high. This is most likely due to the usage
of Prefabs in combination with Components, instead of ScriptableObjects for the Al behavior
settings. Using this built testing Al behavior results in 1 agent carrying roughly 270 native
objects, indicating that the more settings the Al behavior graph contains, the more memory is

used in an inefficient manner.

Memory: GCAF | Memory: GCUM | Memory: OC
1 Agent 284B - 4268 17.3MB 6,280
10 Agents 3.7KB - 4.9KB 17.1MB - 19.2MB 8,640
100 Agents | 40.1KB - 48.6KB 27MB - 30.2MB 32,130
1,000 Agents | 388.4KB—474KB 138MB - 150.2MB 267,030

Table 4-3: RVSAI Benchmark Memory Usage per Frame (Non-Load Balanced)
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Using the load balanced setup as displayed in Figure 4-12, it is apparent that the total amount
of calls grows linear relative to increasing amount of agents (see Figure 4-17), but are
generally exceptionally less compared to Figure 4-15. Since the same architecture is used, the
decision-calls dominate the action calls as well.
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Figure 4-17: RVSAI Benchmark Method Calls for 30s (Load Balanced)
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Figure 4-18 displays a constant median script execution time for an agent amount between 1
and 100 and increases by the factor 6 for 1,000 agents. A misleading representation due to the
dominating overhead Unity generates for the first 100 agents. This concludes that the load
balancing system provided by this asset pack efficiently stabilizes the FPS rate to ensure a
smooth gameplay experience, with the cost of executing very little decisions and actions
(ca. 5.5million calls less for 1,000 agents).
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Figure 4-18: RVSAI Benchmark CPU Usage (Load Balanced)

Table 4-4 shares similarities to the observation of Table 4-3 in regard to the OC and the
GCUM categories. The only exception being the category GCAF showcasing a drastically

smaller growth and overall data usage most likely caused by less total decision and action

calls.
Memory: GCAF Memory: GCUM | Memory: OC
1 Agent 0B —390B 17.7MB 6,260
10 Agents 0B - 474B 22.1MB 8,650
100 Agents 0B —390B — 474B 28.2MB - 32.1MB 32,140
1,000 Agents 316B — 1.2KB - 2.3KB 138.4MB 267,050

Table 4-4: RVSAI Benchmark Memory Usage per Frame (Load Balanced)
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Concluding the benchmark tests, this asset pack provides efficient script execution times with
or without the load balancing feature enabling stable FPS rates. The biggest issue being the
memory management and potential danger when using large Al behavior trees, which is likely
caused by using Prefabs as settings. Furthermore, the ineffectiveness of the decision tree
pattern for executing actions is proven as discussed in Section 3.2 and therefore the
performance requirement as per Section 2.2 is not met.

The maintainability of the graph is rather unusual but provides the core necessary features to
build an Al behavior, as well as the scalability.

s I

Evaluation Process: Step 1

Integrating_ (FSMALIT) (version 1.1.7) into the test project and running its
example Scenes works as described in the store page [18] and manual [30].

Evaluation Process: Step 2 & 3

Based on the store page and documentation this asset pack has no excluded OSs it can run on
and the minimum compatible Unity version is 2019.4.22. Furthermore, it is revealed that this
AIS implements the FSM pattern for decision-making as described in Section 3.1. The FSM
approach is as already revealed not the most maintainable option regarding the growth of the
graph elements (states and transitions) compared to the decision tree or behavior tree patterns
(see Section 3.2 and 3.3). In addition, this asset pack forces decision-making and action
execution each time the FSM is updated, although it is theoretically possible to customize the

architecture of this AIS via inheritance.

The FSM graph is stored a ScriptableObject and the nodes (states) as well, although only the
graph is accessible to the user as a binary file in the project. States can contain two types of
components, both of which inherit from the ScriptableObject class but are not written into a
separate binary file in the project either (contained within the graph ScriptableObject). The
component types are either an action to execute or a decision for potential transitions to other

states.
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Evaluation of AI Asset Packs

The first created FSM graph to test the by this AIS provided features is displayed in Figure

4-19 and simply logs the current visited state. Generation of custom actions and decisions can

be done fairly simple via the context click option.

Figure 4-19: FSMAIT Graph Test

Attempting to create a new blank AI to run the test graph from Figure 4-19 leads to
difficulties, one being a cropped Ul window (see Figure 4-20) and the other being not
necessary requirements, such as a rigged humanoid model and an animation controller for the

requested humanoid model.

Create New Al n

Al CREATOR WINDOW

ehaviour (WFSM B

Figure 4-20: FSMAIT Editor Bug

If the Al creation setup is skipped and attempted manually without an animator controller and
humanoid rig, the FSM either doesn’t work or throws errors in the con