

Developing a scalable, performant and

maintainable Game AI System, as an extension

for the Unity3D Engine

Media Informatics

Department of Electrical Engineering and Computer Science

Technische Hochschule Lübeck

Bachelor Thesis Submitted by Nikodem Grzonkowski

4th October 2021 - 4th January 2022

i

 Abstract

Department of Electrical Engineering and Computer Science

Bachelor of Science (B.Sc.)

Developing a scalable, performant and maintainable Game AI System, as an extension

for the Unity3D Engine

by Nikodem Grzonkowski

Common artificial intelligence (AI) patterns mostly cover specific areas of AI systems (AIS),

such as either decision-making, action management or data storage not equally well if each

area is implemented in the first place. This oftentimes results in convoluted patterns, lacking

the requirements for a maintainable, performant and scalable generic AIS, as it can be

observed with AI asset packs available at the Unity3D Asset Store. The main subjects of this

thesis are researching, evaluating and solving the discovered issues of established AI patterns

in theory and asset packs in practise, by benchmarking said asset packs with tools provided by

the Unity3D Engine and finally developing a generic AIS prototype as an extension to this

game engine using its designated programming language C#.

Table of Contents

ii

Table of Contents

Abstract ... i

Table of Contents ... ii

1 Introduction .. 5

1.1 Prerequisite ... 5

1.2 Definition of Game AI ... 5

1.3 Motivation .. 5

1.4 Goal .. 5

1.5 Organization ... 6

1.6 Unity3D Keywords... 6

2 Requirements ... 7

2.1 Scalability ... 7

2.2 Performance ... 8

2.3 Maintainability ... 8

3 Research and Evaluation of AI Patterns ... 9

3.1 Finite State Machines ... 9

3.2 Decision Trees .. 10

3.3 Behavior Trees ... 12

3.4 Rule-Based Systems ... 13

3.5 Goal Oriented Behavior .. 14

3.6 Fuzzy Logic .. 15

3.7 Blackboards .. 15

3.8 Action Management ... 16

3.9 Scheduling .. 17

Table of Contents

iii

3.10 Conclusion .. 18

4 Evaluation of AI Asset Packs .. 18

4.1 Evaluation Process ... 20

4.2 XXXXXXXXXXX .. 22

4.3 XXXXXXXX ... 28

4.4 XXXXXX... 30

4.5 XXXXXXXXXX ... 39

4.6 XXXXXXXXXXXXX .. 48

4.7 Conclusion .. 50

5 Prototype Development ... 51

5.1 Settings ... 52

5.1.1 State Settings .. 53

5.1.2 Condition Settings .. 54

5.1.3 Action Settings ... 56

5.1.4 Decider Settings ... 57

5.2 Mapping Types ... 60

5.3 Blackboards, Actions and Engines ... 63

5.4 Descriptors ... 70

5.5 Decision System ... 71

5.6 OneAIEntity ... 74

5.7 Graph Editor ... 76

5.8 Code Generation ... 79

6 Prototype Evaluation ... 80

7 Conclusion and Outlook .. 90

Table of Contents

iv

Acknowledgments ... 91

Appendix A - List of Figures ... 92

Appendix B - List of Listings ... 94

Appendix C - List of Tables ... 96

Appendix D - List of External Frameworks .. 96

Appendix E - List of Required Tools .. 96

Bibliography ... 97

Introduction

5

1 Introduction

1.1 Prerequisite

An intermediate to advanced expertise in object-oriented programming, specifically in the

programming language C# [Tool-1] is expected by the reader.

Terms such as reflection, inheritance, event-driven architecture (EDA), garbage collection

(GC), generics, etc., are without further explanation mentioned in this thesis.

Knowledge about artificial intelligence, the Unity3D Engine [Tool-2] and video games in

general is recommended but not mandatory.

1.2 Definition of Game AI

Artificial intelligence (AI) in games is bound to hardware and time limitations and therefore

unlike academic AI focuses on the illusion of intelligence, rather than simulating AI as close

to the real world as possible [1].

The term AI nowadays is oftentimes wrongly associated exclusively with neural networks or

machine learning, although it is true that said fields are part of the entire AI spectrum.

1.3 Motivation

Building game AI for a game project from scratch is especially difficult and time consuming.

For that reason, it is recommended to either integrate an existing generic AI system (AIS) or

build one, which is at best compatible with every game genre and is reusable for many game

projects to come.

Investigating the Unity Asset Store, results in many advertised AI asset packs either

specializing on certain game genres or lacking criteria for a generic and performant AIS,

leaving room for improvement, which is the core motivation for this thesis.

1.4 Goal

The goal of this thesis is to emphasize, that popular AI patterns have difficulties to meet the

requirements for a scalable, maintainable and performant generic AIS, unless modified. This

is highlighted by examining and evaluating AI frameworks, as well as AI asset packs

available at the Unity3D Asset Store, finally solving the observed issues by building an AIS

prototype for the Unity3D Engine.

Introduction

6

1.5 Organization

Chapter 2 defines requirements for a generic AIS as a foundation for the research and

evaluation for established AI patterns in Chapter 3 and existing AISs in Chapter 4.

Including the observations (established issues and improvement proposals) from Chapter 3

and 4, the architecture of the AIS prototype is described in Chapter 5. Following with Chapter

6 the built AIS prototype is evaluated to inspect if the requirements are met and the issues

solved, finally summarizing the results in Chapter 7.

1.6 Unity3D Keywords

Keyword Explanation

GameObject Fundamental object in Unity, acting as a container for Components [2].

Prefab Create, configure and store a GameObject as a reusable template asset to

instantiate in a Scene [3].

ScriptableObject Data container to save large amounts of data, independent of class

instances and Scenes [4].

Component Defines a behavior for a GameObject and acts as a base class for the

MonoBehaviour class [5].

MonoBehaviour Provides hooks for useful events, such as Start and Update [6].

Scene Assets, representing game levels and environments with their respective

GameObjects [7].

Inspector View and edit properties for almost everything related to the Unity3D

engine, for example GameObjects, Components and in-Editor settings [8].

Asset Store A marketplace for Unity3D developers, offering asset packs created by

other Unity3D developers (hobbyists, professionals, companies, etc.) [9].

Table 1-1: Unity3D Keywords

Requirements

7

2 Requirements

Before any evaluation or development process can begin, first the requirements of a generic

game AIS in the context of this thesis must be defined, which is the subject of this chapter.

2.1 Scalability

The generic AIS should support a wide range of Unity versions, preferably starting with the

minimum supported version in the Asset Store (2018.4.0f1), up to the newest available Unity

long time support (LTS) versions. Furthermore, the generic AIS must at least be compatible

with the following operating systems (OS):

• Windows

• iOS

• macOS

• Android

• Linux

The generic AIS must be free of restrictions for creating custom AI agents and behaviors,

meaning that no pre-defined template is mandatory, such as a (3D) mesh, rig and animation

controller.

Custom AI behavior can be added at any time while working in the Unity project by offering

expansion of the core AIS modules via inheritance. This includes implementing custom

decision-making, action execution and data containers, able to interact with the (modular)

core AIS, if required.

Providing said conditions should theoretically cover the basis of a generic AIS, able to

support AI behaviors for any game genre and agile adaptations during the game AI

development process.

Requirements

8

2.2 Performance

Minimizing performance costs as much as technically possible is a crucial topic for game

development in general. Many game relevant algorithms require execution time for and access

to the central processing unit (CPU), random access memory (RAM) or graphics processing

unit (GPU), including but not limited to:

• Rendering (Textures, Models, Shaders, etc.)

• Animation

• Physics Calculation

• Audio System

• AI

For that reason, the core modules of the generic AIS must provide stable performance levels

for lots of AI entities in a dense area, using as little CPU, GPU and RAM as technically

feasible. Though it is the responsibility of the AI developer to manage the performance costs

for his or her own custom built AI algorithms, the generic AIS must implement efficient and

fast algorithms as a foundation for any custom-built AI behavior.

This concludes, that not every module has to be executed every frame during the lifetime of a

game, but rather when relevant which can be done via an EDA.

2.3 Maintainability

The more complicated the (growing) AI behavior gets, the more important is the overview and

maintainability for it. This leads to a system, which must offer a user experience of high

quality by providing a graphical user interface (GUI) for the AI maintenance, which is at best

self-explanatory in terms of navigation, interaction and naming of functionalities.

Potential actions and decisions an AI entity can make are to be visually displayed in a GUI,

which preferably offers a debugging system, showcasing the current decisions made by an AI

instance at runtime. Furthermore, adding, removing and modifying the AI behavior within the

Unity project must be fast and easy to access for the AI designer and developer.

The same rules apply to creating custom from the generic AIS inherited AI code by providing

options to automatically generate scripts form pre-defined template files, saving time writing

boilerplate code.

Related to the scalability requirement, no limitations or exclusions in the form of models, rigs,

animations, scripts, etc. should be a consequence of integrating and using this generic AIS.

Research and Evaluation of AI Patterns

9

3 Research and Evaluation of AI Patterns

This chapter covers the research and evaluation of established AI patterns based on the

requirements highlighted in Chapter 2, focusing rather on the application of the patterns for a

generic AIS, than the in-depth explanation.

3.1 Finite State Machines

“Finite-state machines are a model of computation with limited amount of memory known as

a state. Each machine has only a finite number of possible states (for instance, wander or

patrol). A transition function determines how the state changes over time, according to the

inputs to the finite-state machine” [10, p. 509]

Furthermore, a state or state transition can group and return a collection of actions for the

entry, loop and exit of the state to alter the environment of the game. [11]

Figure 3-1 pictures an example for a finite state machine (FSM), describing an AI behavior

for an agent that searches, follows and attacks an enemy visualized with states and their

respective transitions.

Figure 3-1: Simple FSM Example

Adding a state requires to setup a transition to the next desired state, hence it is not possible to

reach any other state from the current state, without a pre-defined transition. Considering this

special case, the FSM growth can be described as m*n total transitions, where m = transitions

per state and n = the state amount. For the worst-case scenario, where every in the FSM

existing state must be reachable from every other state (m = n), the growth can be described in

the exponential Big O Notation O(n²) [12]. While this is not likely to happen if an experienced

and efficient AI designer works with a FSM, this maintainability issue persists for

sophisticated AI behaviors, which require lots of states and transitions. For that reason, the

requirement maintainability defined in Section 2.3 is not met for a flat FSM.

Research and Evaluation of AI Patterns

10

Using a hierarchical FSM is an improvement but does not solve this issue on a layer basis,

since each layer represents a flat FSM.

The performance of FSMs is O(1) in memory and O(m) per time [11, p. 320], where m =

transitions per state, resulting in a linear growth in performance costs, which is acceptable in

regard to the performance requirement mentioned in Section 2.2.

Since the actions are accessible directly on the states, the action execution is quite efficient,

only in the case of the transition checks being called separately. Other than that, mapping and

injecting runtime and action specific data is not defined in the FSM architecture but is

mandatory for the scalability requirement as stated in Section 2.1.

Since the FSM pattern lacks the maintainability and scalability requirements, it is not

recommended to be implemented in a generic AIS. The upside of using FSMs though, is the

ease of debugging an AI agent, since the current active state is clearly visualized and

potentially easy to trace. Considering this, a state which shows the AI agent’s current active

behavior and potentially having an impact in the next decision cycle, is a useful feature for a

generic AIS.

3.2 Decision Trees

“A decision tree is made up of connected decision points, also called choices or nodes. The

tree has a starting decision, its root. For each decision, starting from the root, one of a set of

options is chosen. These choices lead either to further decision, or to a final action”

[11, p. 300]

The branching of decision trees is built either binary, where a node can only subdivide in at

max two other nodes (see Figure 3-2) or not limited at all (see Figure 3-3) [11].

Figure 3-2: Simple Binary Decision Tree Example

Research and Evaluation of AI Patterns

11

Figure 3-3: Simple Non-Limited Decision Tree Example

For maintainability and memory reasons it is not recommended to implement a binary

decision tree, since more branch nodes must be created to reach a leaf node, compared to a

non-limited decision tree. Although the advantages of a binary tree being the hierarchical

consistency and a more balanced decision tree, resulting in less conditional checks and better

performance. On the other hand, a binary decision tree can also be built using a non-limited

decision tree implementation, leaving both options to be chosen by the AI designer.

The definition of a balanced tree describes that the tree has about the same number of leaves

for each branch. The performance of a balanced tree is at best O(log(n)), where

n = the number of decision nodes in the tree. At worst a (balanced) decision tree traverses

through each node and has a performance cost of O(n) [11, p. 308].

Considering this, the performance requirement defined in Section 2.2 is met for the

decision-making architecture, since O(log(n)) is the second best growth in terms of saving

performance, besides the constant O(1) [12]. As for the action execution, the decision tree

pattern must always traverse through its branches in order to execute them, which is an

inefficient implementation, as it does not provide the single responsibility principle [13]. This

can be avoided by separating decision-making from action execution, by notifying action

manager classes with the resulting leaf nodes and thus prevent redundant traversals, providing

a modular and scalable architecture. Therefore, the scalability requirement from Section 2.1

is not met for this pattern.

Unlike the FSM pattern highlighted in Section 3.1, a decision tree grows linear O(n) in terms

of its branch and leaf nodes, since it is not forced to act from its last resulted leaf node and

additionally is always run from its root node. For that reason, the decision tree pattern is easy

to overview and maintain and therefore meets the maintainability requirement defined in

Section 2.2.

In conclusion, the decision tree pattern provides a valid decision-making algorithm for a

generic AIS, as long as it is separated from the action management and data injection.

Research and Evaluation of AI Patterns

12

3.3 Behavior Trees

The behavior tree pattern, as illustrated in Figure 3-4 consists of four general task types [11]:

• Composites

• Conditions

• Decorators

• Actions

Figure 3-4: Simple Behavior Tree Example

Composite tasks are representative for branches in the behavior tree and keep track of child

tasks, which in return can also be a task of type composite, condition, decorator, or action

[11].

Common composite tasks are selectors and sequences. Both composite types run their

children one after another and decide if they should continue or stop, depending on the result

of the last run child task. A selector will immediately stop and return a successful result, once

any child node finishes with success, unlike a sequence composite which invalidates and stops,

once a failed child task is found. There are a variety of other composite tasks, that handle the

execution of their underlying children and it is possible to implement a custom composite task

via inheritance.

Both condition and action tasks are found in the leaf nodes of the behavior tree. A condition

task tests some properties of the data it is given and returns a result, in which the parent

composite task can decide how to proceed. An action task alters the state of the game, by for

example executing an animation or moving the designated agent to its desired location.

Research and Evaluation of AI Patterns

13

The decorator task behaves like a wrapper class for a single child task, with the purpose of

modifying it in some shape or form. As demonstrated in Figure 3-4, a simple example for a

decorator class is a repeater, which repeats the underlying child until a certain interrupt or fail

condition is met.

Behavior trees share a similar structure to decision trees and therefore have the same

performance costs for best and worst-case scenarios, which are O(log(n)) at best and O(n) at

worst (see Section 3.2) [11, p. 346]. Another commonality with the decision tree is, that the

behavior tree pattern always must traverse through its branch nodes, in order to execute an

action task, thus wasting performance. As stated in Section 3.2, it is a more performant and

modular approach to separate action management and data injection from the decision-making

process.

The behavior tree pattern offers a modular and expandable approach for custom task creation

via inheritance but similar to the decision tree pattern is convoluted regarding action execution

and decision-making. As a result, this pattern does meet the performance and scalability

requirements (see Section 2.1 and 2.2) for the decision-making system, but not for action

execution and data management.

Furthermore, it is an ineffective approach to use condition tasks as leaf nodes to handle the

traversal of a tree, forcing the AI designer to use a sequence composite task with a condition

task and another composite task as a child to prevent the traversal of a sub tree. As a result,

redundant nodes are added to the tree, which could be avoided by providing an option to

attach a condition task to any task type. Solving this inconvenience, this AI pattern meets the

maintainability requirement defined in Section 2.3.

3.4 Rule-Based Systems

The rule-based system (RBS) contains a database, that offers knowledge of the game world to

the AI and a set of if-then rules, that lead to the desired decision [11].

RBSs offer multiple ways to interpret valid and invalid condition results, by using rule

arbitration, adding flexibility to the decision-making process [11]. For instance, it may be the

case to pick only the first valid result of a rule set (first applicable) or collect and execute all

valid results. In addition, it is possible to cache the last recently used ruleset to save time in

the next decision cycle.

Research and Evaluation of AI Patterns

14

As for the performance costs, the RBS has a growth of O(nm), where n = items in the

database and m = clauses to check [11, p. 447], leading to O(n²) at worst for n = m or O(n) at

best. The worst case can be avoided, if the required data is requested directly and not searched,

resulting in a similar performance cost growth to the FSM pattern (see Section 3.1) and

therefore meeting the performance requirement defined in Section 2.2.

The scalability requirement (see Section 2.1) of the RBS can be achieved, by adding rules

to rulesets as custom encapsulated objects, which contain an overwritable method returning

either true or false. As for the database and data injection, it is recommended to use a modular

approach and define specific databases for rule objects, rather than a single database that

stores all information, as it is further established in Section 3.7. Additionally, actions must be

built as separate encapsulated objects as well, to be dynamically assigned to rule or ruleset

objects, preventing a hardcoded architecture [13].

The maintainability requirement outlined in Section 2.3 is not met for this pattern, due to

the fact that the rules are stored in a flat list and no visual representation of an RBS is

provided by default.

“They remain a fairly uncommon approach, partly because similar behaviors can almost

always be achieved in a simpler way using decision trees or state machines” [11, p. 431]

In conclusion, this AI pattern lacks the maintainability requirement and is worse in terms of

performance compared to the patterns in Section 3.2 and 3.3, but offers an interesting

approach to interpret decision results using the rule arbitration feature, which potentially can

be combined with other AI patterns.

3.5 Goal Oriented Behavior

“Goal-oriented behavior is a blanket term that covers any technique taking into account

goals or desires.” [11, p. 406]

The goal-oriented behavior (GOB) is not in particular a decision-making algorithm, but rather

an approach in how an agent uses the decision system to achieve its pre-defined goals.

For example, an agent needs to stay saturated and hydrated, while trying to reach a faraway

destination point. Those goals/desires are represented as hunger, thirst and keep moving, each

stored as a number (integer, or float). For every desire, certain actions are defined that either

drain or satisfy said desires, for instance:

• Move to destination action = -2 keep moving, +1 hunger, +2 thirst

• Drink from bottle action = +1 keep moving, -4 thirst

• Eat food action = +2 keep moving, +1 thirst, -4 hunger

Research and Evaluation of AI Patterns

15

Depending on the desire’s priority and its satisfaction level, the next decision may stop a

running action and start another one, which fulfills the most needed desire, maintaining the

balance for all desires.

In conclusion the GOB neither validates nor invalidates the requirements defined in

Chapter 2, since it is built on top of an existing AI pattern.

3.6 Fuzzy Logic

“Fuzzy logic […], enables a computer to reason about linguistic terms and rules in a way

similar to humans. Concepts like “far” or “slightly” are not represented by discrete intervals,

but by fuzzy sets, enabling values to be assigned to sets to a matter of a degree – a process

called fuzzification” [1, p. 416]

Since the basic fuzzy logic pattern does not represent any (hierarchical) decision management,

it is not recommended as a top-level AI pattern, but rather as a useful extension to an existing

AI pattern to simulate intuitive decision-making. The fuzzy logic pattern is basically a more

sophisticated version of the RBS described in Section 3.4 but due to its specialization does

not meet the requirements defined in Chapter 2.

3.7 Blackboards

“A blackboard system isn’t a decision making system in its own right. It is a mechanism for

coordinating the actions of several decision makers.” [11, p. 461]

Actions that need to be performed by an agent oftentimes need information of the current

environment, such as other agents, world objects or the agent it is running on. For example, an

agent that needs to flee to designated destination points on the world map with obstacles and

chasers to avoid, which only exist and change at runtime.

Blackboards describe a wrapper class, which contains all necessary information required by

the executing action. During the actions lifetime the blackboards are managed by a designated

class and fed into the action as a parameter. The action then has the option to read or modify

the contents of the acquired blackboard.

Using a single (global) blackboard for all possible action types results in poor scalability,

since no inheritance is provided and in addition not every referenced data type is required by

every action type, wasting memory and most likely performance as well [13]. This leads to an

implementation form that requires a specific (local) blackboard type, mapped to its

corresponding action type, contained and handled within a specific manager class.

Research and Evaluation of AI Patterns

16

This is complicated to build but solves the scalability issue and offers the option to add

custom action and blackboard types to the AIS. On the other hand, the negative aspect of this

approach, is that the AI developer is forced to create 3 separate classes (action, blackboard,

manager) for a new action type, as a result decreasing the maintainability for AI programmers.

To solve this issue, a script generation tool must be offered by the AIS, creating the dependent

classes from template files, which contain the relevant boilerplate code.

Since the blackboard architecture primarily stores data, no significant performance costs are

produced. Building a local blackboard architecture for (action) data-injection in this modified

form meets the scalability requirement (see Section 2.1), but in return adds difficulties for

the maintainability requirement (see Section 2.3). Although, this cannot be avoided without

losing scalability, since the amount of action types for any game is unknown.

3.8 Action Management

The action management pattern examined in this section describes a system, which handles

the execution and lifetime of actions and is unlike the previous discussed patterns not

particularly related to AI or decision-making and therefore represents an entire separate

module with the specific task of action management only.

Some actions are more sophisticated, than a single function call and oftentimes need to repeat

for an indefinite time, requiring a manager class, which offers mechanics such as:

• Detecting an actions state in its current lifecycle and reacting to it

o Running, paused, initializing, finished

• Interrupting a running action

• Adding and removing actions

• Order of action execution

Looping through each action in the action manager costs O(n) in performance and memory,

where n = the amount of actions to execute, assuming every action costs O(1) in performance

and memory. Since this pattern does not cover any decision-making algorithms, it must be

combined with another pattern, such as the ones mentioned in Section 3.1 through 3.4.

This results in not all possible actions of an AI behavior being stored in an action managers

list, but rather added or removed dynamically depending on the last decision result.

Considering this and that the most efficient performance cost growth of the examined

decision-making pattern is O(log(n)) at best and O(n) at worst, this pattern meets the

performance requirement as of Section 2.2.

Research and Evaluation of AI Patterns

17

The data-injection is not handled in the action manager pattern but is required for some

actions that need to change the world state, based on the world input. Combining this pattern

with the blackboard pattern mentioned in Section 3.7 would solve this issue by injecting a

blackboard into the current executing action.

To find the relevant blackboard for the respective action, a specialized action manager must

be provided, which is restricted to handle only specific (base) actions of a certain type, that in

return only accept a compatible blackboard type.

As a standalone pattern the maintainability requirement (see Section 2.3) can neither be

validated or invalidated, though if combined with the blackboard pattern, a code generation

tool must be provided for the AI developers to prevent writing the same boilerplate code for

each new action type.

The scalability requirement defined in Section 2.1 can be achieved by providing

overwritable methods and encapsulated classes for actions, action managers and blackboards.

3.9 Scheduling

“A scheduling system manages which tasks get to run when. It copes with different execution

frequencies and different task durations.” [11, p. 804]

The scheduling pattern works with a total time budget, which needs to be distributed across

the next running actions in addition to the (different) frequencies the actions can be called [11].

Basically, a scheduler is a more sophisticated version of an action manager and similar to it is

not related to AI and decision-making in particular.

Since the scheduling pattern offers more functionalities than the action manager pattern, more

overhead in calculation is generated, but nevertheless outputs the same performance and

memory cost growth O(n), where n = action amount to execute. What is done better in

comparison to the action manager is that the frequency between each action call can be set in

a way that the actions are not called every frame and therefore performance is saved. Giving

certain actions more time to perform per frame than others is crucial for a generic AIS as well,

since not all actions share the same performance costs, for instance animation, pathfinding or

spotting actions. Therefore, the performance requirement defined in Section 2.1 is met for

this pattern even more efficiently, than the action manager examined in the previous

Section 3.8.

Provided that the scheduling pattern is combined with a data-injection and decision-making

pattern, it shares the same requirement achievements for scalability and maintainability

(see Section 2.1 and 2.3) as the action manager.

Evaluation of AI Asset Packs

18

3.10 Conclusion

In conclusion, there is no (AI) pattern, that meets all requirements defined in Chapter 2 for a

generic AIS equally well. It is rather a combination of multiple (modified) patterns to form

a generic AIS, such as the action manager or scheduler for action handling (see Section 3.8

and 3.9), the decision tree or behavior tree for decision-making (see Section 3.2 and 3.3) and

finally the blackboard pattern (see Section 3.7) for data-injection.

Usually, agents in games maintain a decision for a certain amount of time, like chasing

another agent until a certain state change occurs. Considering this, the decision-making

pattern should offer multiple implementation forms for calling the decision-making algorithm,

since it is not mentioned in the investigated patterns starting from Section 3.1 through 3.4 in

how often the decision-making algorithm must be executed per frame or any other time

interval. To solve this unclarity, a special scheduler (or action manager) must be built, that

acts as a wrapper class for decision-making calls only, offering an EDA or polling technique

to execute decisions.

Both polling and the EDA have pros and cons depending on the use case. For instance, it is

not necessary to check if a certain object exists every frame, but to wait until the object emits

an event once it appears in the game world. On the other hand, there might be a use case

where an agent needs to follow a moving target in a fluent manner and cannot wait until the

target emits a position changed event, which in addition would be less efficient performance

wise in any case [11].

4 Evaluation of AI Asset Packs

This chapter covers the evaluation of AI asset packs available at the Unity3D Asset Store,

based on the requirements defined in Chapter 2 in addition to the observations made in

Chapter 3.

First, a curated list of the AISs available at the Unity3D Asset Store is created, since not every

AIS is relevant for this thesis, for instance genre specific AISs such as racing or flight game

AI. The targeted AISs are the ones, which claim to offer a generic architecture for every game

genre, as well as customizable and expandable AI logic.

AI asset packs listed on the Asset Store are found with search terms such as “AI” [9] or

“Behavior” [14] and can be ordered either by relevance, popularity, rating, most favored,

published date, name, price or recently updated. While it is unknown how the order by

algorithm works in detail, the most important ones for this evaluation are relevance,

popularity and rating.

Evaluation of AI Asset Packs

19

Following five AI systems are chosen and further examined in this thesis:

• XXXXXXXXXX [15]

• XXXXXXXX [16]

• XXXXXX [17]

• XXXXXXXXXX [18]

• XXXXXXXXXXX [19]

Due to the limited amount of time for this thesis, not all generic AISs available at the Unity

Asset Store are evaluated. Systems worth mentioning, which could not be included in this

thesis are Ultimate AI System [20], Behavior (Game Creator 1) [21], Dynamic AI [22], AI

Behavior [23] and Breadcrumb Ai [24].

Moreover, the chosen AISs for evaluation are explained briefly in their functionality and code,

due to it being out of scope for this thesis and in addition to all relevant information about the

AI asset packs being located on their respective store page and documentation.

Each evaluated AI asset pack may not exist in the Asset Store, or may change its contents

(description, documentation and the AIS itself) at a future time. In that case the evaluated

asset packs can be found in the provided separate Unity benchmark test project, located within

the USB device. Furthermore, the minimum supported Unity version in the Asset Store

(2018.4.0f1), as well as other unknown subjects regarding the Unity3D Engine will likely

change in the future.

Evaluation of AI Asset Packs

20

4.1 Evaluation Process

The evaluation process steps applied to the chosen AI asset packs are defined as follows:

1. Integrating the AI asset pack into a for the AI evaluation designated Unity3D project.

2. Examining the documentation and sample Scenes to understand the overall structure,

OS and Unity version compatibilities, usage of features, as well as a brief overview of

its architecture.

3. Comparing the decision-making, action handling and data management algorithms of

the AIS to the in Chapter 3 investigated AI patterns and evaluating their performance,

maintainability and scalability based on the requirements described in Chapter 2.

4. Testing the AI asset pack with custom code and use cases, to either confirm or deny the

established requirements with the following steps:

a. Create a separate (encapsulated) Unity Scene for the testing environment.

b. Create custom actions, which manipulate the runtime agent and the game world

in some manner.

c. Create custom conditions to randomly succeed or fail.

d. Create custom data-containers for the custom actions and conditions to read

from and write to.

e. Build a testing AI behavior with the custom created actions, conditions and data

containers.

f. Benchmark multiple agents in one Scene at once for 30 seconds, each with 16

potential actions to reach, while using Unity’s Profiler tool [25] as a

measurement. Starting with 1, afterwards 10, then 100 and finally 1,000 agents

at once, always counting the total decision and action execution count during the

running benchmark tests.

To evaluate all AISs equally, the custom actions, data-containers and conditions reference the

same implementation across all evaluated AISs. Moreover, all for the test irrelevant

applications and Unity Editor windows, which could temper with the benchmark results are

disposed of. Additionally, the Scene setup for each test is equal for all AISs in its structure

and focuses on the AI performance costs only, meaning all redundant calculations, such as

animations and renderings are excluded from the measurements as far as possible.

The hosting hardware, which benchmarks the AISs has following properties:

• OS: Microsoft Windows 10 Pro (10.0.19043)

• CPU: Intel® Core™ i7-7700HQ, Driver version (10.0.19041.546)

• RAM: 16GB, DDR4

• GPU: NVIDIA GeForce GTX 1070, Driver version (471.96)

The chosen Unity3D version for the testing project relevant for step 1 of the evaluation

process is of version 2020.3.19f1 LTS.

Evaluation of AI Asset Packs

21

The benchmarking action and condition classes perform a square root calculation over the

same value, iterating over it 100 times to simulate an expensive operation [26]. In C# and

Unity this can be achieved with the code snipped shown in Listing 4-1.

Listing 4-1: Performance Heavy Method Simulation

To achieve a random condition pass of 50% in C# and Unity, a floating-point value of 0.5 is

checked against a random generated floating-point number between 0 and 1.

To test the instance-based custom data injection per agent, a wrapper class is created (see

Listing 4-2), containing primitive values which are tempered with during the Scene at runtime

by the custom condition and action classes. This is achieved by defining integer values in the

data container which get incremented by the accessing (condition or action) classes and is

observed in Unity’s Inspector when agents are selected individually, supported by the string

values to visualize and confirm the uniqueness of the current selected agent.

Listing 4-2: Custom Data Container

The CustomSharedDataComponent field is a reference to a Component, shared across all

agent instances and stores the total global action and decision execution amount to oppose the

performance costs to the total executions made.

If the AIS architecture enables it, the decision-making process is executed separately from the

action execution in order to illustrate the contrast of time and memory consumed between the

action and decision-making executions. Furthermore, the AI behavior setup for the 16

possible actions as per step 4.e and 4.f must be built as balanced as possible to ensure the

same testing environment for every AI asset pack and to simulate a well-designed AI behavior,

as mentioned in Section 3.2.

Evaluation of AI Asset Packs

22

As per the Unity manual [25], the evaluation relevant profiler modules are briefly explained in

Table 4-1.

Profiler Module Category Description

CPU Scripts How much time milli seconds (ms) your

application spends on running scripts.

Memory Object Count

(OC)

The number of native object instances in your

application.

Memory GC Used Memory

(GCUM)

The amount of memory used by the GC heap.

Memory GC Allocated in Frame

(GCAF)

The amount of memory allocated per frame on

the GC heap.

Table 4-1: Profile Moduler Explanation

The recording window for each benchmark test is restricted to 600 frames, due to Unity’s

Profiler recording limit, in addition to its caused overhead for the memory and CPU hardware

components. It is also worth mentioning, that the Unity Editor itself generates overhead for

each module and category, especially visible for test cases with a small number of agents and

method calls. All evaluation results, including the Profiler recordings are located in the

benchmarking Unity project, saved on the provided USB device.

4.2 XXXXXXXXXXX

Evaluation process: Step 1

The integration of the asset pack XXXXXXXXXXX (BD) version 1.7 into the Unity testing

project as mentioned in step 1 of the evaluation process works with no issues.

Evaluation process: Step 2 & 3

Based on the store page description [15] and documentation [27] BD is an AIS mainly built

upon the behavior tree decision-making system as examined in Section 3.3.

Furthermore, it seems like there are no limitations regarding the supported OSs, only that

special handling is required for UWP apps. The minimum required Unity version is 2017.4.1

and with that is below the minimum possible supported Unity version on the Asset Store

(2018.4.0f1).

Evaluation of AI Asset Packs

23

Unfortunately, as of the time this thesis is written, the AIS development studio does not

provide sample (tutorial) files from their website, nor in the main AI asset pack for some

reason. Although this being a minor inconvenience, the documentation and video tutorial

series are explaining the usage of this AI asset pack clearly.

As illustrated in Figure 4-1 BD uses a node-based graph user interface (UI) in the Unity

Editor to build AI behaviors in.

Figure 4-1: BD Graph UI Excerpt

The behavior tree is placed on a GameObject either as an instance in a Scene or as a Prefab,

while the nodes in the behavior tree are stored internally and not as external and editable files

in the Unity project. This can both be seen as an upside and downside, because an AI designer

might want to reuse setting files in other trees without duplicating them, while on the other

hand the project has fewer binary files to maintain and persist.

The graph editor UI and the accessibility to the most relevant functionalities, such as creating

and maintain task nodes and data is implemented clearly, which results in a good user

experience and maintainability. BD offers a large amount of action type tasks, which do

simple operations, for instance fetching a primitive C# value from a component. This granular

setup might be helpful to build up a more sophisticated structure, but also fills up too much

space in the graph UI and in return equals rather a visual scripting tool, than an AIS in the first

place. On the other hand, this can be avoided with custom built actions, which do all

necessary operations to achieve a larger less granular goal.

As already detected BD uses the behavior tree decision-making algorithm as the main

architecture and visual display. In Section 3.3 the requirements defined in Chapter 2 are

discussed with the conclusion, that the behavior tree pattern meets the requirements for

decision-making but not action management or data-injection and in addition partly has minor

issues with the maintainability in regard to the node amount using condition nodes.

Evaluation of AI Asset Packs

24

For data-management BD uses a custom-built architecture to dynamically add an inheritable

object called SharedVariable. Most primitive C# types, as well as the most relevant Unity

types are already prepared as SharedVariables by BD, for example the SharedString

representing the string type. Said SharedVariables offer different possibilities to read the

desired object type from, such as a constant or assigned value from another source.

All for the AI behavior necessary SharedVariables can be added, removed and maintained in

a designated list for the relevant behavior tree. Assuming the SharedVariables are cached and

don’t have to be found by name (or hash) each time they are requested, it is a valid

implementation to support custom data in amount and types. In that regard it can be compared

to the blackboard architecture described in Section 3.7, although it is not injected in the

actions as a parameter but rather used as a locally stored reference in a task.

Evaluation Process: Step 4

Creating custom data containers, actions and conditionals as per step 4 of the evaluation

process works flawlessly from the AI programmer’s perspective, due to the provided template

files and automatic code generation features. After compilation the class types appear in the

graph editor UI as a (node) creation option.

To setup the test scenario as described in step 4.e, the behavior tree graph including the

custom action and condition tasks is built, as pictured in Figure 4-2 (excerpt) and Figure 4-3

(full overview).

Figure 4-2: BD Benchmark Testing Graph Fragment

Evaluation of AI Asset Packs

25

Figure 4-3: BD Benchmark Testing Graph Entire View

While building the graph, it is apparent that connecting nodes separated at a greater distance

via the dragging connection functionality is tedious. A feature, such as connecting a node via

direct reference (name or id) or via a picking option from a list of potential nodes available in

the graph might solve this issue. Furthermore, the editing of multiple nodes of same type at

once is prohibited, which is unfortunate regarding the AI setup time and general usability.

The graph Figure 4-4 displays the action, decision and total execution amount for each test

case interval defined in step 4.f. It is apparent, that the decision calls dominate the action calls,

since the behavior tree always must be traversed to execute an action and therefore add

unnecessary overhead and waste performance, as stated in Section 3.3. Furthermore, it is

visible that the total calls stagnate relative to the by the factor 10 increasing agent amounts.

Figure 4-4: BD Benchmark Method Calls for 30s

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Total Global Calls

Evaluation of AI Asset Packs

26

Figure 4-5 visualizes the median CPU time usage of all called (AI) scripts per frame. The

growth of the script execution time grows nearly linear to the increasing number of agents,

considering the agent amount for each interval is multiplied by 10. For the extreme case of

1,000 agents calculated at once, the median script execution time per frame is roughly 30ms,

which would lead to a stuttering gameplay experience in combination with other game

relevant renderings and calculations.

Figure 4-5: BD Benchmark CPU Usage

Table 4-2 illustrates the memory usage provided by the Unity3D Profiler, growing about

linear relative to the increasing agent amount (factor 10) but not relative to the total calls

amount displayed in Figure 4-4. Based on this, it is assumed that the increasing memory is

rather tied to the GameObject count, than the executing scripts for this AIS.

Unlike the GCAF category, GCUM highlights a stair like growth, especially visible when

calculating 10 to 1,000 agents at once, as it can be seen in Figure 4-6. Looking at the category

OC, it is evident that the Unity3D Engine creates a base overhead of ca. 5,700 native objects

and that a single added agent GameObject roughly represents 3-4 native objects based on the

data presented.

0

5

10

15

20

25

30

35

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Evaluation of AI Asset Packs

27

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 1.7KB 16.1MB 5,710

10 Agents 11.4KB 15.5MB – 17.6MB 5,740

100 Agents 110KB 23MB – 26.9MB 6,100

1,000 Agents 1MB 110.1MB – 130.1MB 9,700

Table 4-2: BD Benchmark Memory Usage per Frame

Figure 4-6: BD Memory Profiler Excerpt (1,000 Agents)

Summarizing the benchmark test results, this asset pack provides a well implemented memory

management system, since the memory usage grows linear to the increasing agent amount and

no significant memory leaks can be observed. As for the script execution time, the caused

overhead by the decision-making algorithms proves the ineffectiveness of the decision tree

and behavior tree pattern in regard to the action execution and therefore does not meet the

performance requirements of Section 2.2. Furthermore, the AI developer must proceed with

caution when building a Scene calculating lots of agents at once to prevent a low frames per

second (FPS) rate. Other than that, the scalability and maintainability as of Section 2.1 and

2.3 are provided by this AIS.

Evaluation of AI Asset Packs

28

4.3 XXXXXXXX

Evaluation Process: Step 1

The first step, integrating the AIS XXXXXXXX (EA3) version 3.0.0 as mentioned in the

evaluation process step 1 causes no issues and the example Scenes are working as described.

Evaluation Process: Step 2 & 3

The minimum required Unity version by this AIS is 2018.4.27 and with that almost covers the

minimum supported Unity version of the Asset Store. Furthermore, no excluded OSs can be

found in the documentation [28] and store page [16].

Based on the documentation and sample Scenes it is not possible to detect a designated AI

pattern, other than it might be an RBS as mentioned in Section 3.4. It is not clear how custom

actions, conditions and data containers can be implemented into or expanded from this asset

pack.

The AI behavior settings for an AI agent are located within one MonoBehavior class as it can

be seen in Figure 4-7. Special MonoBehavior scripts are the only interface for the AI designer

to maintain the AI behaviors in, thus lacking a tool to overview the AI behavior decisions and

actions visually. Furthermore, the behavior data and behavior implementation are strictly

defined within the core system and not built in a modular, but hardcoded manner and

therefore providing an unsatisfactory code architecture [13].

Figure 4-7: EA3 AI Behavior Setup

Evaluation of AI Asset Packs

29

Inspecting the code as shown in Listing 4-3 reveals the assumption of this AIS being an RBS

to be true and as discussed in Section 3.4 does not meet the requirements for a generic AIS

(see Chapter 2).

Listing 4-3: EA3 RBS Code Snippet

Evaluation Process: Step 4

Since this AIS does not provide expandability, it is not possible to create the test cases

described in the evaluation process step 4. For that reason, this AIS does not pass the test

cases, nor the requirements from Chapter 2.

Evaluation of AI Asset Packs

30

4.4 XXXXXX

Evaluation Process: Step 1

The integration of XXXXXX (RVSAI) version 1.5 in the test project and the sample Scenes

are working as described. Based on the store page [17] the minimum required Unity version is

2018.3.14 and no excluded OS platforms are to be found in the documentation [29].

Evaluation Process: Step 2 & 3

After creating a simple testing behavior as illustrated in Figure 4-9, it is apparent that this AIS

implements a (binary) decision tree pattern, which is examined in Section 3.2. Unlike how it

is stated in the manual to be based on the behavior tree pattern. Examining the manual excerpt

Figure 4-8, as well as the test graph from Figure 4-9 indicates, that the tree structure used in

this AIS combines the branch and leaf nodes to one shared node.

Figure 4-8: RVSAI Node Explanation [29]

Figure 4-9: RVSAI Test AI Setup

Evaluation of AI Asset Packs

31

The test graph as shown in Figure 4-9 results in a persistent Prefab file with the structure

displayed in Figure 4-10. Since the graph and its nodes visualize settings for AI behavior and

not instantiation of runtime GameObjects, it would have been more efficient to use

ScriptableObjects instead for consistency and memory reasons, due to less overhead being

generated by ScritpableObjects [4].

Figure 4-10: RVSAI Test Graph Prefab

As already discussed in Section 3.2, this AI pattern meets requirements for maintainability

and performance regarding the decision-making procedure but not the action handling and

data management. This AIS handles the action execution similar to the classic decision tree

pattern and thus has to traverse the tree each time to execute an action.

RVSAI uses graph variables for global data similar to the (global) blackboard pattern

described in Section 3.7 and is stored as a MonoBehavior in the graph Prefab, visualized in

Figure 4-11. As already discussed in Section 3.7, it is recommended to build a specific (local)

blackboard for modularity and scalability reasons.

Figure 4-11: RVSAI Global Variables

Evaluation of AI Asset Packs

32

Upon investigating the code, where and how the variables are requested, it is revealed that the

required list item always must be fetched via its description name (see Listing 4-4). This is

especially critical for performance reasons. For example, if 100 bool variables are stored

within the same list, they must be fetched by name (string comparison) every time, at worst

every frame and after n (in this example 100) comparisons.

Listing 4-4: RVSAI Variable Bool Provider

For runtime and instance-based data RVSAI uses a context provider (see Listing 4-5), which

can be inherited and specified for custom needs and is similar to the specified and more

efficient (local) blackboard pattern.

Listing 4-5: RVSAI Type Conversion

Evaluation Process: Step 4

RVSAI offers different approaches for AI decision-making and action execution with load

balancing. While load balancing is active, the execution calls are limited to guarantee a stable

and high FPS rate in order to prevent game stuttering. This configuration setup is a

well-designed feature by RVSAI if lots of less important AI agents need to be calculated in

the same Scene, while keeping the overall game experience as immersive and stable as

possible. This setup (see Figure 4-12) is included in the benchmark tests.

Evaluation of AI Asset Packs

33

Figure 4-12: RVSAI Load Balanced AI Setup

Since the execution calls are reduced drastically during the load balancing setup, another

configuration setup without RVSAI load balancing is included for the benchmark test, as

shown in Figure 4-13.

Figure 4-13: RVSAI Non-Load Balanced AI Setup

The manual explains that expandability for custom data and logic is granted for the AI

developer with the help of script templates accessible via the context menu in the Unity

project view [29].

Evaluation of AI Asset Packs

34

Figure 4-14 represents the balanced decision tree using the custom scripts created for the

benchmark test as required by step 4 of the evaluation process.

Figure 4-14: RVSAI Benchmark Test AI Behavior

The first benchmark tests use the non-load balancing setup from Figure 4-13 to examine how

this asset pack behaves when maximum output (executions) is the highest priority.

Since it is not possible for the classic decision tree pattern to separate the decision-making

system from the action execution, as stated in Section 3.2, the decision calls are significantly

higher than the action calls (see Figure 4-15) and thus performance is wasted for redundant

calls. Although the growth of total calls per agents does appear to be linear in this graph

visually, it is not the case statistically due to the multiplication of agents by the factor 10 for

each new test interval (see step 4.f of the evaluation process).

Evaluation of AI Asset Packs

35

Figure 4-15: RVSAI Benchmark Method Calls for 30s (Non-Load Balanced)

Figure 4-16 showcases, that the median script execution time in ms per frame expands linear

relative to the increasing agent amount by the factor 10, with the highest execution time

being about 14ms enabling a smooth gameplay experience even in an extreme case of 1,000

calculated agents at once.

Figure 4-16: RVSAI Benchmark CPU Usage (Non-Load Balanced)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Total Global Calls

0

2

4

6

8

10

12

14

16

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Evaluation of AI Asset Packs

36

Similar to the memory Profiler results in Section 4.2, a stair like pattern can be observed

showcasing how the GC is handled by this AIS and the Unity3D Engine. Furthermore, it is

evident that the values of the categories GCUM and GCAF roughly grow linear in relation to

the (times 10) increasing agent amount (see Table 4-3). What stands out, is the fact that the

OC category of the memory module is exceptionally high. This is most likely due to the usage

of Prefabs in combination with Components, instead of ScriptableObjects for the AI behavior

settings. Using this built testing AI behavior results in 1 agent carrying roughly 270 native

objects, indicating that the more settings the AI behavior graph contains, the more memory is

used in an inefficient manner.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 284B – 426B 17.3MB 6,280

10 Agents 3.7KB – 4.9KB 17.1MB – 19.2MB 8,640

100 Agents 40.1KB – 48.6KB 27MB – 30.2MB 32,130

1,000 Agents 388.4KB – 474KB 138MB – 150.2MB 267,030

Table 4-3: RVSAI Benchmark Memory Usage per Frame (Non-Load Balanced)

Evaluation of AI Asset Packs

37

Using the load balanced setup as displayed in Figure 4-12, it is apparent that the total amount

of calls grows linear relative to increasing amount of agents (see Figure 4-17), but are

generally exceptionally less compared to Figure 4-15. Since the same architecture is used, the

decision-calls dominate the action calls as well.

Figure 4-17: RVSAI Benchmark Method Calls for 30s (Load Balanced)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Total Global Calls

Evaluation of AI Asset Packs

38

Figure 4-18 displays a constant median script execution time for an agent amount between 1

and 100 and increases by the factor 6 for 1,000 agents. A misleading representation due to the

dominating overhead Unity generates for the first 100 agents. This concludes that the load

balancing system provided by this asset pack efficiently stabilizes the FPS rate to ensure a

smooth gameplay experience, with the cost of executing very little decisions and actions

(ca. 5.5million calls less for 1,000 agents).

Figure 4-18: RVSAI Benchmark CPU Usage (Load Balanced)

Table 4-4 shares similarities to the observation of Table 4-3 in regard to the OC and the

GCUM categories. The only exception being the category GCAF showcasing a drastically

smaller growth and overall data usage most likely caused by less total decision and action

calls.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 0B – 390B 17.7MB 6,260

10 Agents 0B – 474B 22.1MB 8,650

100 Agents 0B – 390B – 474B 28.2MB – 32.1MB 32,140

1,000 Agents 316B – 1.2KB – 2.3KB 138.4MB 267,050

Table 4-4: RVSAI Benchmark Memory Usage per Frame (Load Balanced)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Evaluation of AI Asset Packs

39

Concluding the benchmark tests, this asset pack provides efficient script execution times with

or without the load balancing feature enabling stable FPS rates. The biggest issue being the

memory management and potential danger when using large AI behavior trees, which is likely

caused by using Prefabs as settings. Furthermore, the ineffectiveness of the decision tree

pattern for executing actions is proven as discussed in Section 3.2 and therefore the

performance requirement as per Section 2.2 is not met.

The maintainability of the graph is rather unusual but provides the core necessary features to

build an AI behavior, as well as the scalability.

4.5 XXXXXXXXXX

Evaluation Process: Step 1

Integrating XXXXXXXXXX (FSMAIT) (version 1.1.7) into the test project and running its

example Scenes works as described in the store page [18] and manual [30].

Evaluation Process: Step 2 & 3

Based on the store page and documentation this asset pack has no excluded OSs it can run on

and the minimum compatible Unity version is 2019.4.22. Furthermore, it is revealed that this

AIS implements the FSM pattern for decision-making as described in Section 3.1. The FSM

approach is as already revealed not the most maintainable option regarding the growth of the

graph elements (states and transitions) compared to the decision tree or behavior tree patterns

(see Section 3.2 and 3.3). In addition, this asset pack forces decision-making and action

execution each time the FSM is updated, although it is theoretically possible to customize the

architecture of this AIS via inheritance.

The FSM graph is stored a ScriptableObject and the nodes (states) as well, although only the

graph is accessible to the user as a binary file in the project. States can contain two types of

components, both of which inherit from the ScriptableObject class but are not written into a

separate binary file in the project either (contained within the graph ScriptableObject). The

component types are either an action to execute or a decision for potential transitions to other

states.

Evaluation of AI Asset Packs

40

The first created FSM graph to test the by this AIS provided features is displayed in Figure

4-19 and simply logs the current visited state. Generation of custom actions and decisions can

be done fairly simple via the context click option.

Figure 4-19: FSMAIT Graph Test

Attempting to create a new blank AI to run the test graph from Figure 4-19 leads to

difficulties, one being a cropped UI window (see Figure 4-20) and the other being not

necessary requirements, such as a rigged humanoid model and an animation controller for the

requested humanoid model.

Figure 4-20: FSMAIT Editor Bug

If the AI creation setup is skipped and attempted manually without an animator controller and

humanoid rig, the FSM either doesn’t work or throws errors in the console indicating that

required Components of the GameObject are missing, although the tested FSM as shown in

Figure 4-19 only handles logging actions (not needing a humanoid rig or animator controller).

In order to solve the redundant requirements issue, a custom FSM controller has to be written,

which inherits from vIControlAI provided by this asset pack. Implementing this interface

leads to further issues, including the forced implementation of specific methods, such as

ResetHealth, LookAtTarget and many more. It appears, that those methods are behavior

scripts specific for humanoid AI, that should rather be refactored into separate actions to

justify the generic AI architecture by FSMAIT but as of now are violating the single

responsibility principle [13].

Evaluation of AI Asset Packs

41

In order to get custom data to the (custom) actions and decisions, a new FSM behavior class

with the relevant custom data is created. This class must inherit from

vIFSMBehaviorController, due to it being the external runtime data container the actions and

decisions get as a parameter (see line 25 of Listing 4-6). The specific required FSM behavior

class then can be casted from this interface.

Listing 4-6: FSMAIT Benchmark Custom Action

This solution equals the global blackboard pattern discussed in Section 3.7, since the

vIFSMBehaviorController is tied directly to the FSM and action execution and is compared to

the local blackboard pattern not the best implementation in terms of scalability and

performance. Using the cast operator possibly each frame could be avoided if a specific type

is declared as the parameter for the respective action classes.

Evaluation of AI Asset Packs

42

Evaluation Process: Step 4

To benchmark the FSM according to the evaluation process defined in step 4.f, which states

that every leaf must be reachable from the current AI state, the graph shown in Figure 4-21 is

built. This design though does not represent a regular FSM setup and a second graph Figure

4-22 is created, assimilating a common FSM design and is tested separately.

Figure 4-21: FSMAIT Benchmark Setup - Any State

Figure 4-22: FSMAIT Benchmark Setup - Classic

Evaluation of AI Asset Packs

43

Building a balanced decision tree from this FSM is not possible, since the FSM does not

traverse to a destination node of type leaf, but rather treats every state as a leaf and potential

final destination, which results in less actions being executed if a branch state (without an

action) is the destination of the decision result.

While building the FSM graphs, following features were missing, providing an insufficient

usability, user experience and maintainability:

• Duplicating and copying state nodes

• Zooming in and out, while working in the graph editor

• Editing multiple state nodes of same type at once

Figure 4-23 illustrates a stagnating curve of total execution calls with the decision calls

dominating the action calls. This is due to more potential decisions to make and randomly fail,

since each state has multiple transitions (with attached decision scripts) but only one action

per state to execute, resulting in transitions/ decisions > states/ actions. Additionally, this asset

pack does not provide separation of changing the state and updating a state’s action and thus

forcing the decision-making procedure before executing an action.

Figure 4-23: FSMAIT Benchmark Method Calls for 30s (Classic Setup)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

9,000,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Global Total Calls

Evaluation of AI Asset Packs

44

As pictured in Figure 4-24 the ms rate roughly expands linear to the increasing number of

agents with a critically high rate of ca. 80ms for 1,000 simultaneously calculated agents. In

fact, the benchmark test with 1,000 agents at once does not capture the 30 seconds in 600

frames as shown in Figure 4-25.

Figure 4-24: FSMAIT Benchmark CPU Usage (Classic Setup)

Figure 4-25: FSMAIT CPU Profiler Excerpt (1,000 Agents & Classic Setup)

0

10

20

30

40

50

60

70

80

90

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Evaluation of AI Asset Packs

45

The data provided by Table 4-5 indicates, that the GCAF category increases by the factor 10

for each row, which is linear to the increasing number of agents provided on the left-hand side

of the table. The category GCUM showcases, that the growth is linear as well, although by a

much smaller value per added agent. Both categories are fluctuating in their memory usage in

each row, due to the internal GC activities in C# and Unity. Furthermore, it is apparent that

each agent roughly corresponds to 4 native objects as it can be read and calculated from the

column OC.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 3.1KB – 3.4KB 14.8MB – 16.7MB 6,160

10 Agents 36.3KB – 37.2KB 14.1MB – 16.8MB 6,200

100 Agents 362KB – 365KB 16.4MB – 19.2MB 6,560

1,000 Agents 3.4MB – 3.5MB 24.9MB – 28.6MB 10,170

Table 4-5: FSMAIT Benchmark Memory Usage (Classic Setup)

Evaluation of AI Asset Packs

46

Figure 4-26 displays the execution calls using the AI behavior graph displayed in Figure 4-21,

with the decision calls overruling the action calls, although not as drastically as shown in

Figure 4-23. This is due to less transitions and thus decisions being called relative to the

existing states with their attached actions. Nevertheless, there are 16 potential (failing)

transitions, each decision-cycle in relation to 1 executing action.

Figure 4-26: FSMAIT Benchmark Method Calls for 30s (Any State Setup)

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Global Total Calls

Evaluation of AI Asset Packs

47

Less critical median ms rates compared to Figure 4-24 with almost the same total execution

calls (see Figure 4-23 and Figure 4-26), this Figure 4-27 shows a linear expansion of median

ms rates per frame relative to the increasing number of agents, proving that the

decision-making system is exceptionally more expensive than the action execution system.

Figure 4-27: FSMAIT Benchmark CPU Usage (Any State Setup)

Both categories GCAF and GCUM displayed in Table 4-6 grow linear for each newly added

agent, although there is an inconsistency for the category GCUM in the agent range between

10 and 100, most likely caused by the Unity3D Engine, otherwise not explainable. Each agent

adds round about 4 native objects as it can be seen in the OC column, thus expanding linear

relative to the agent count as well.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 0.8KB – 1.7KB 15.7MB – 17MB 5,730

10 Agents 11KB – 13.6KB 16.6MB – 18.6MB 5,770

100 Agents 110KB – 117KB 14.6MB – 17.7MB 6,130

1,000 Agents 1.1MB 19.9MB – 26.7MB 9,730

Table 4-6: FSMAIT Benchmark Memory Usage per Frame (Any State Setup)

0

5

10

15

20

25

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Evaluation of AI Asset Packs

48

The benchmark tests of this AI asset pack concludes that the decision calls are exceptionally

expensive, highlighting that the AI designer should proceed with caution when building an

FSM AI behavior with lots of transitions and agents being simultaneously calculated in a

single Scene. At best the AI programmer should implement a custom architecture that splits

the decision-making system from the action execution system via inheritance, therefore the

performance requirement form Section 2.2 is not met for this AIS. Other than that, the

memory usage and management of this asset pack is efficient and economical.

Overall, this asset pack has the potential to provide scalability (see Section 2.1) but fails in

execution of it, due to the redundant code base, although it is possible to work around it if the

unused methods are ignored. As for the maintainability, the graph editing tool lacks crucial

features to provide fast and efficient AI behavior creation and maintenance.

4.6 XXXXXXXXXXXXX

Evaluation Process: Step 1

The integration of the asset pack XXXXXXXXXXXXX (UAIS), version 1.7 works with no

issues. Based on the documentation [31], as well as the store page [19] this AIS supports all

OSs and requires at least the Unity version 2019.4.24 to run on.

Evaluation Process: Step 2 & 3

The provided sample Scenes showcasing different AI behavior, such as attack or follow

player with different models seem to work upon first impression but have some issues either

in path finding or decision making, due to the presented unexpected behavior.

Evaluation of AI Asset Packs

49

The supplied documentation does not explain the decision-making pattern, as well as the

custom action and condition creation for the AI developer. Looking into the code reveals, that

this AIS implements the RBS pattern as discussed in Section 3.4 in a hardcoded and

non-modular way (see Listing 4-7), unlike how this AIS is advertised in the asset store at the

time this AIS is evaluated.

Listing 4-7: UAIS RBS Code Snippet

Evaluation Process: Step 4

As a result, this AIS does not provide the requirements defined in Chapter 2 and the

benchmark tests as described in the evaluation process are not achievable, due to the lacking

expandability and modularity of the core architecture.

Evaluation of AI Asset Packs

50

4.7 Conclusion

Some asset packs available at the Unity Asset Store (see Section 4.3 and 4.6) do not offer an

expandable architecture as advertised and therefore cannot be tested and validated to be

generic AISs.

Those AI packs, which do validate the benchmark test defined in step 4 of Section 4.1 share

the same issue that the decision-making system is convoluted with the action execution,

always wasting performance for use cases that do not require decision-making calls each

frame. With that observation, the theory stated in the AI patterns evaluation (see Section 3.10)

is proven and that a combination of multiple (modified) frameworks is a necessity to meet the

requirements defined in Chapter 2. Furthermore, the benchmark test results showcase linear

growth in memory and CPU time usage per added agent, indicating that the implemented AI

patterns cause no memory leaks or inefficient data handling, except for the evaluated AI pack

in Section 4.4.

Using script generation tools based on template files, as it is provided by each validated asset

pack (in terms of testing and scalability) is crucial for fast and efficient custom code creation

while working with a generic AIS. As for the maintainability, most evaluated AISs provide a

graph editor to visually display a custom setup AI behavior with its potential decisions and

actions to execute, hinting that a graph editor is mandatory for a generic AIS to build large

and complex AI behaviors.

Prototype Development

51

5 Prototype Development

The development of the AIS prototype is subject of this chapter, considering the findings of

the researched and evaluated AI patterns in Chapter 3 and the AI asset packs in Chapter 4.

First of all, to ensure a stable and organized development environment, the project is set up

with a version control system, specifically git [Tool-3]. For task organization the issue board

system of GitLab [Tool-4] is used, which additionally hosts the projects git repository

enabling the feature to link commits to tasks and display them visually in the GitLab issue

board.

The Unity version containing this project is the from the Asset Store minimum supported

Unity version 2018.4.0f1, to potentially reach as much Unity developers as possible.

As concluded in Section 3.10 and 4.7, a combination of patterns must be used to ensure a

scalable, maintainable and performant AIS and separately cover tasks, such as:

• Decision-making

• Action management

• Data management

For decision-making either the behavior tree from Section 3.3 or the decision tree as discussed

in Section 3.2 are the best patterns to make use of. While the behavior tree offers a good

architecture for expandability by providing the possibility to inherit from tasks, such as

composites, actions, conditionals and decorators, it has maintainability issues regarding the

node amount, causing the tree to potentially grow unnecessarily big. The decision tree on the

other hand offers a more simplified version of a tree structure with a clean separation of

branch and leaf nodes but lacks options for more sophisticated decision-making. Which tree

pattern is chosen and how it is modified to solve its issues is further discussed in Section

5.1.4.

For action management the scheduler pattern (see Section 3.9) is the most promising choice,

although there might be some difficulties defining execution time per frame for an action

using the Unity3D Engine, since synchronous method calls using the native Unity API cannot

be interrupted. Keeping this in mind, as well as the limited development time for this AIS

prototype, the built scheduler does not include all features a regular scheduler would and is

further highlighted in Section 5.3.

Splitting action management and decision-making into two separate modules with their own

life cycles and execution times adds the question in how to know when and which previously

Prototype Development

52

chosen action should stop in the next decision cycle? The solution to this uncertainty is at first

established in Section 5.1.1, 5.1.3 and answered in Section 5.3.

For data management the blackboard pattern in its local form as investigated in Section 3.7 is

the only valid option for this AIS prototype and is introduced in Section 5.3, as well as in

Section 5.4.

Taking the evaluated asset packs form Chapter 4 into account, the best maintenance and

usability is provided by BD and its node graph editor tool. Its advantages and disadvantages,

as well as the ones from the other AISs are included in Section 5.7.

To increase the readability and maintainability of classes displayed in the Unity Inspector the

modified open-source project NaughtyAttributes [Extern-1] is included in this AIS prototype,

which provides C# attributes for the programmer that alter the visual output of objects

rendered in the Unity Inspector.

In order to maintain the projects (custom) AI behavior, some form of configuration

architecture must exist within this prototype, providing accessibility, as well as expandability

for the AI designer and programmer. This architecture is further described in the following

Section 5.1.

5.1 Settings

To provide a positive usability and user experience for the AI designer maintaining his or her

custom AI behavior using this AIS prototype, the AI settings are accessible and editable via a

GUI, specifically by the Unity Inspector and therefore not in a (pre-) compiled script file.

Two base approaches making use of Unity objects and the Inspector are feasible:

• Components

• ScriptableObjects

Using Unity’s Component system requires a GameObject as a host and is generally only

accessible as an instance in a Scene [2]. The exception to this is the usage of Unity’s Prefab

system, which enables the developer to persist a GameObject as a template in the Unity

project without being dependent of a specific Scene [3]. It is revealed in comparison with the

asset pack RVSAI outlined in Section 4.4 and the other evaluated and validated asset packs

that using ScriptableObjects instead of Prefabs for AI settings is recommended to save

memory overhead. Furthermore, ScriptableObjects are intended to represent settings files in

the first place, unlike Prefabs which are intended to be instantiated in a Unity Scene and

potentially interact or be interacted with the game environment [4].

Prototype Development

53

The evaluated asset packs FSMAIT (see Section 4.5) and BD (see Section 4.2) both use

ScriptableObjects as persistent files for the AI graphs only but not its nodes. This approach

has advantages in terms of a more lightweight and cleaner Unity project but forces the AI

developer to potentially recreate settings, which could otherwise be reused in other similar AI

behavior graph. Furthermore, this might be the root issue of why the multi-editing feature is

not supported by both AISs. For those reasons, setting files (ScriptableObjects) created in this

AIS prototype are always persisted and accessible in the Unity project individually.

Considering the chosen AI patterns for this AIS prototype, following base setting types are

required:

• State Settings

• Condition Settings

• Action Settings

• Decider Settings

Each setting type inherits from the OneAIBaseNotesScriptableObject class, adding optional

Unity Editor only comment and naming fields for the AI designer to further improve the

organization and maintainability of an AI project using this prototype.

Since the decision-making and action management tasks are separated from each other, a form

of identification is required for actions which may still be running in the next decision cycle

but are requested to stop. For that reason, the state settings are included in this prototype and

are not to be confused with the FSM pattern.

5.1.1 State Settings

As hinted in Section 3.1 using states for visual debugging and including them in conditional

operations for decision-making is an advancement for a generic AIS and necessary to solve

the issue finding already running actions in the separate scheduling systems.

The state settings derive from an abstract class BaseLemma, which includes fields such as the

label (string) for description, a labelHash (ulong) generated from the string for faster

comparisons and an optional parent of type BaseLemma. The parent field enables to group

state settings in a hierarchy for potentially less maintenance for the AI designer and less

logical checks if entire state groups can be found within one check.

Prototype Development

54

5.1.2 Condition Settings

Condition settings offer a mechanism to validate or invalidate a certain given input in a

modular and expandable manner by using them as an optional attachment for other settings,

reducing the number of nodes and layers in a tree unlike the conventional behavior tree

pattern does (see Section 3.3).

The expandability is guaranteed with an inheritable virtual method as displayed in Listing 5-1.

Said method takes two parameters of type OneAIEntity (class highlighted in Section 5.6), one

being the target for the Condition to run on and the other being the Condition requester. Both

parameters may be the same object in reference (target = requester) which is generally the

case for the decision-making process discussed in Section 5.5 but can differ in specific

settings and actions, such as in the implementations of spotting mechanics (target = spotted,

requester = observer). The requester OneAIEntity parameter is most of the time required for

debugging purposes (visualize current picked decision), as it is the case for the graph editor

discussed in Section 5.7. The OneAIConditionResult object is a wrapper class returning the

result of the Condition method with a bool value, indicating the overall success state of the

Condition and additionally providing a score value of type float for advanced decision-making

options (see Section 5.1.4).

Listing 5-1: OneAI Base Condition Method

OneAIStateCondition, a specific implementation of such a Condition class is displayed in

Listing 5-2 with the purpose to check the required or not allowed (depending on the Condition

configuration) state settings against the current applied states on the target OneAIEntity.

Listing 5-2: OneAI State Condition

Prototype Development

55

The OneAIBaseCondition class can furthermore be used to group other Conditions together

and handle the summarized results specifically, for instance:

• ORConditionsContainer (Any condition must pass)

• ANDConditionsContainer (All conditions must pass)

Listing 5-3: OneAI Base Condition For Descriptors

To inject specific runtime data required from an OneAIEntity and make use of the local

blackboard pattern (see Section 3.7), an abstract OneAIBaseConditionForDescriptors wrapper

class is written and illustrated in Listing 5-3. A Descriptor type generic for its inherited

specialized Condition classes is required with this implementation and is furthermore

necessary for the mapping mechanism examined in Section 5.2 in depth.

The OneAIBaseDescriptor class is a runtime instance-based data container, editable in the

Unity Inspector and exists for the purpose to provide a modular architecture for data-injection,

specifically for Conditions and is highlighted in Section 5.4.

Inheriting from this wrapper class and making use of the mapping mechanics (line 33-34), for

example reading and interpreting the health of an OneAIEntity is illustrated in Listing 5-4.

Listing 5-4: OneAI Health Descriptor Condition

Prototype Development

56

5.1.3 Action Settings

Action settings represent the leaf settings of the AI tree, containing information about the

execution frequency, life span, and input data for the resulting action, managed by the

scheduler.

Since each action must be maintained inside a scheduler, the same base action setting applies

for every custom (specialized) action.

The base action setting, as illustrated in Figure 5-1 provides relevant information about the

resulting action for the scheduler and the decision-making system, such as:

• Infinite or limited repetition

• Delay of execution, as well as the exact timings

• Max allowed actions in one scheduler at once sharing this exact setting (reference)

• The priority, indicating the execution order if multiple actions are present within the same

scheduler

• The Condition to either run or ignore the action

• The Condition to either include or exclude this action from the decision result

• The disposal requirements indicating when and under which Conditions the action should

terminate

• The state setting represented by this action (setting)

• States and actions, which should be removed upon entering the scheduler

• States and actions, which either prevent this action from entering the scheduler or terminate

this action when already running

Prototype Development

57

Figure 5-1: OneAI Base Action Settings

Terminating already running (forever repeating) actions, which were chosen in a previous

decision result but are invalid in the present decision result with the help of state settings,

solves the issue not knowing when and which action to stop, mentioned in the beginning of

Chapter 5. Furthermore, this approach offers an EDA by triggering the termination of an

action, which is in this case faster than checking (each frame) if the action should be

terminated.

5.1.4 Decider Settings

For this AIS prototype a mixed tree pattern is chosen, which includes implementations of both

the behavior and decision tree (see Section 3.2 and 3.3).

To keep the tree structure as simple and clean as possible, the branch nodes only contain

children either of type leaf nodes (actions) or other branch nodes but not both at the same time,

which is an implementation used primarily in the decision tree pattern. The decorator task

used in the behavior tree pattern is removed completely from this mixed tree pattern since its

functionality is replaced by the separate scheduling system combined with the action settings.

Prototype Development

58

Figure 5-2 and Figure 5-3 highlight the Decider setting in the Unity Inspector, one in form of

a leaf Decider (branch-leaf), only containing action settings of the base type

OneAIBaseSettings as children and the other a branch Decider, referencing other Decider

branches as its children.

Figure 5-2: OneAI Branch-Leaf Decider

Figure 5-3: OneAI Branch Decider

The Decider setting setup as a branch-leaf offers an option to queue the action settings list in a

sequential manner, meaning that the action settings are not immediately added to their

respective schedulers at once but rather get added after the previous action terminates. This is

done in the independent class AsyncSettingsQueueHandler which subscribes to the current

active action’s disposal event.

Prototype Development

59

If the Decider setting is setup as a branch node, it can either reference further Decider settings

as direct referenced children, or an entire (sub) graph, referencing another root Decider node

from a (different) graph. This option increases the maintainability as stated in the

requirements Section 2.3 and provides a modular approach for the AI designer by subdividing

a complex AI behavior into reusable sub behaviors.

Listing 5-5 displays the method of the Decider setting, responsible for filtering valid

branch-leaf Decider nodes (containing only action settings as children). This method can be

inherited to include custom decision-making algorithms similar to the composite task

structure from the behavior tree pattern. The returning list (line 258) with items of type

ApplyDecisionNodeResult store each traversed Decider node, including if the traversal was

successful in the first place, as well as containing information about validated and invalidated

action settings, all of which for debugging reasons. The OneAIEntity parameter (line 259) is

used as a target and a requesting entity for (optional) Conditions. The ref list (line 260) with

items of type OneAIDecider is the decision result, containing only branch-leaf Deciders with

action settings as children to be handed over to the respective scheduling systems via the

decision system highlighted in Section 5.5.

Listing 5-5: OneAI Tree Traversal Method

Listing 5-6 shows an Enum used in this Decider setting to choose from a set of possible

decision-making and tree traversal techniques and is integrated in the base OneAIDecider

method, as showcased in Listing 5-5.

Listing 5-6: OneAI Decisions Enum

Although it is possible to integrate custom decision-making algorithms, the current

implementation requires the AI programmer to also handle the tree traversal and optional

condition calls when overriding this method. Refactoring the tree traversal and the Condition

checks into separate also overridable methods would solve this issue and is due to the limited

amount of time considered to be integrated in the next development iteration of this AIS

prototype.

Prototype Development

60

5.2 Mapping Types

In order to provide an inheritance-based architecture for the core AIS components, as well as

specific data injection for actions and schedulers, an automated mechanism that maps custom

created and therefore yet unknown and of each other dependent classes, while avoiding

performance heavy reflection calls at runtime is a necessity for this generic AIS prototype.

Figure 5-4 illustrates the class relations as follows:

• Custom Setting A and Custom Setting B inherit from Base Setting

• Custom Engine A and Custom Engine B inherit from Base Engine

• Custom Action A and Custom Action B inherit from Base Action

• Therefore, the Base Setting, Base Action and Base Engine classes do not share the same

parent

• Custom Setting A and Custom Engine A both map to Custom Action A

• Custom Setting B and Custom Engine B both map to Custom Action B

The mapping issue, using the illustration of Figure 5-4 is described in the following example:

• Custom Setting A and B are dynamically added in the same list LS with items of type

Base Setting

• Custom Engine A and B are stored in the same list LE with items of type Base Engine

• The goal is to map a Custom Setting with a Custom Engine, both of which dependent of

the same exact Custom Action

• Following mappings are allowed:

o Custom Setting A and Custom Engine A

o Custom Setting B and Custom Engine B

• Iterating through each element of LS and LE, how to find the allowed mappings?

Figure 5-4: Generic Mapping Issue

Prototype Development

61

The inherited class knows its dependent type via its pre-defined generic, which is restricted to

inherit from the dependent type only, as it is showcased in line 17 of Listing 5-7 and line 13 of

Listing 5-8. With that, the generic type can be stored as a variable, offering the ability to

compare the dependent generic types via reflection, solving the mapping issue in the first step.

This procedure though comes with an expensive performance cost and is not applicable if

mapping multiple dynamic instances is required often at runtime [32].

Listing 5-7: OneAI Base Engine

Listing 5-8: OneAI Base Settings For Engine

To avoid this performance issue, the caching procedure as stated below is established:

• Get the base type of the desired other class via reflection at compile time or at worst at

(runtime) initialization

• Extract the name of the desired class and store the string value

• Convert the string into a hash integer value and store it

After the caching is done, the generic type comparison via reflection can be avoided with the

much faster hash comparison. One risk, that comes with hash generation is, if the hash

generation algorithm is handled at the OS level and returns different outputs depending on the

current used OS, which is a problem when multiple developers work with the same Unity

project, but not on the same OS. This issue can be avoided by implementing reliable

open-source hash generation algorithms or automatically recalculating the hashes upon

starting the Unity project or built game.

Another risk of converting string values to hash integers is, that hash collision of different

string contents is a possibility, leading to false confirmations. The probability for a hash

collision, specifically for this use case (names of classes) is not high enough (up to

4,294,967,295 possible hash values for a 32bit Integer) and the performance boost is too

beneficial to discard the hash comparison technique.

Prototype Development

62

Listing 5-9 displays the implementation of a reflection call in line 264 to 265 and hash

generation in line 270 for every scheduler (OneAI-Engine) type, inheriting the

OneAI-BaseEngine to resolve the hash of its supported generic action type. The

ReflectionHelper method used in this illustration in line 264 returns the first found generic

type, after traversing up to the OneAI-BaseEngine type, for the reason to ensure the correct

generic argument. This is because custom written child OneAI-Engine classes might include

additional generics or not use any generics at all in their class header, causing an invalid hash

in the final result (line 264 and 270).

Listing 5-9: OneAI Automatic Type To Hash Generation

Using this mapping mechanic enables any AI developer to build custom AI behaviors and

settings, expanding from and still interacting with the core system of this prototype.

Furthermore, securing the scalability and performance requirements from Section 2.1 and

2.2.

Prototype Development

63

5.3 Blackboards, Actions and Engines

The previous Section 5.2 explains the relations between the action settings, actions and

OneAI-Engines, as well as solving the mapping issue of inherited types. Based on this, the

detailed implementation of the OneAI-Engine in combination with the action and the

blackboard pattern is examined in this section, highlighting the separated action execution

from the decision-making algorithms.

Listing 5-10 represents the wrapper interface, which is implemented by the BaseAction class,

illustrated in Listing 5-11. The wrapper interface is necessary to store any type of action in a

variable (or list), without pre-defining the BlackboardType generic, thus avoiding syntactical

and compilation errors in external classes.

The relevant properties for the OneAI-Engine are:

• IsDone, indicating if the action should be discarded

• RunCount, indicating how often this action is run and in combination with the settings,

how often the action is allowed to run

• InvalidRunsAmount, indicating how often the validation failed of this action and in

combination with the settings, how often the action is allowed to invalidate

• Settings and StoppingSettings are used to handle the actions termination and keepalive

requirements

• RunDelayTiming, indicating the execution frequency of this action

Prototype Development

64

Listing 5-10: OneAI Action Wrapper Interface

Listing 5-11: OneAI Base Action

The Success bool property is mainly used in the AsyncSettingsQueueHandler class

(mentioned in Section 5.1.4) to indicate if the action queue should abort or continue on failure

or success.

The Engine property is a helper property to offer a direct reference to the host OneAI-Engine,

containing the action instance.

Listing 5-12 is an excerpt of the BaseAction class showcasing abstract methods necessary for

any action type to be handled by the OneAI-Engine, as shown in the illustration of Listing

5-13 in lines 592 and 598. This scheduling algorithm of the OneAI-Engine is managing an

action’s execution frequency (line 585), termination (line 603 and 613) and validation

(line 592).

Prototype Development

65

Listing 5-12: OneAI Base Action Abstract Methods

Listing 5-13: OneAI Base Engine Run Actions

Prototype Development

66

Listing 5-14 displays the IBaseActionWrapper interface implemented by the

OneAIEntityBaseEngine class in Listing 5-15. The wrapper interface exists to store any

OneAI-Engine type without a specified generic type in a variable (see Section 5.6), which is

the same reason the IBaseActionWrapper interface is created (see Listing 5-10 andListing

5-11).

Listing 5-14: OneAI Base Engine Wrapper Interface

Listing 5-15: OneAI Base Engine Header

Prototype Development

67

Listing 5-16 illustrates the generic action types in queues, to either enter (line 59) or leave

(line 60) the current active executing list (line 57) and is handled in the Tick method provided

in the OneAIEntityBaseEngine (see Listing 5-17):

• The _actionsAddQueue is handled in line 395 within the Tick method

• The _actionsRemoveQueue is handled in line 392 within the Tick method

• Executing the actions as illustrated in Listing 5-13 is handled in line 400 within the Tick

method

Listing 5-16: OneAI Base Engine Action Queues

Listing 5-17: OneAI Base Engine Tick Method

Prototype Development

68

Listing 5-19 showcases an example of a custom OneAI-Engine hosting actions of type

BaseFollowAction and provides the specified FollowBlackboard type displayed in Listing

5-18, implementing the local blackboard pattern explained in Section 3.7 in a specific use case,

avoiding direct casts and type conversions.

Listing 5-18: OneAI Follow Blackboard Example

Listing 5-19: OneAI Follow Engine Example

Listing 5-20 highlights the usage of the Tick method defined in Listing 5-17 in combination

with custom blackboard data injection, handled in the BaseFollowAction instances. Listing

5-21 is an example of a specific OneAI-Engine using Unity’s Update system to call the Tick

method in line 12. This is evidence for an expandable scheduling system not restricting the

user to a pre-defined and pre-compiled update frequency.

Listing 5-20: OneAI Follow Engine Tick Usage

Listing 5-21: OneAI Tick In Update Method

Prototype Development

69

Listing 5-22 showcases the overridden ApplySettings method, where the specific follow

actions are instantiated (visible from line 127 to 146) based on the given settings parameter.

The base ApplySettings called in line 116 at first validates the settings by checking if any

preventing states are present within the OneAIEntity. The resulting action is added into the

local queue variable. Each new (custom) OneAI-Engine must implement the action

instantiation in a similar manner to convert custom settings into the respective custom actions.

Since rewriting the same boilerplate code leads to bad maintainability for the AI programmer,

a code generation tool is added to this prototype (outlined in Section 5.8).

Listing 5-22: OneAI Follow Engine Action Creation

Listing 5-23 displays the in the OneAI-Engine implemented EDA, terminating running

actions independent of the decision-making system, every time a state is either added or

removed. This method solves the issue mentioned in Chapter 5, not knowing how and when to

address obsolete but still executing actions by the schedulers in a performant fashion.

Prototype Development

70

Listing 5-23: OneAI Base Engine EDA

5.4 Descriptors

As already hinted at in Section 5.1.2, the Descriptor class is mainly used as a specific data

container for Conditions but can also be used in combination with OneAI-Engines, actions or

any other architecture.

Unlike the blackboard implementation combined with actions and OneAI-Engines, the

Descriptor class is an optional Unity Component and is not tied to any OneAI-Engine or

action. Since the OneAIEntity only contains state settings to describe itself but not any other

form of instance-based data containers, the Descriptor class is created as a dynamic extension

to the OneAIEntity, offering a modular approach to include custom runtime data per instance.

Listing 5-24 is an example implementation of the OneAIBaseDescriptor, storing health as a

local float variable for the representing OneAIEntity and is referenced in the health Descriptor

Condition, as already shown in Listing 5-4 of Section 5.1.2.

Listing 5-24: OneAI Health Descriptor Example

Prototype Development

71

5.5 Decision System

In order to trigger the decision algorithms established in the Decider settings (see Section

5.1.4) on an agent instance at runtime, the Decision System is built as a Unity Component for

the respective OneAIEntity.

The decision-making algorithms of the Decider settings are handled in line 141 of Listing

5-25. The ref list leafNodes from line 139 stores the gathered branch-leaf Decider nodes,

which are iterated through in line 148, to be potentially included in or excluded from the final

decision. Line 191 handles the sequential setup Decider nodes with their child action settings,

by injecting the actions into the designated AsyncSettingsQueueHandler objects, as mentioned

in Section 5.1.4.

Listing 5-25: OneAI Decision System Tick Method

Prototype Development

72

The foreach loop in Listing 5-26 contains a switch statement, handling the filtering of the

child action settings from the current iterated leaf Decider node with the Enum illustrated in

Listing 5-6. Using a switch statement to filter the action settings is limiting the expandability

for custom filtering algorithms, unless the entire Tick method is overridden. This issue is

similar to the expandability issue described in the Decider settings (see Section 5.1.4) and is

addressed in the next development iteration of this AIS prototype, due to the limited

development time.

Listing 5-26: OneAI Decision System Filter Deciders

Prototype Development

73

Listing 5-27 represents the method for single picked action settings called from the foreach

loop and in line 285 passes the setting to the host OneAIEntity instance, where the setting is

mapped to the correct OneAI-Engine using the mechanism described in Section 5.2 and is

implemented in Section 5.6.

Listing 5-27: OneAI Decision System Transfer Setting

Listing 5-25 demonstrates the core logic of the Decision System located within the Tick

method, which can be called at custom frequencies, events, or in the default Unity Update

method as it is done in Listing 5-28, similar to the OneAI-Engine system pictured in Listing

5-21 of Section 5.3.

Listing 5-28: OneAI Decision System Update Example

Prototype Development

74

5.6 OneAIEntity

The OneAIEntity object (see Listing 5-29) is the centralized AI Component containing

references to Descriptors and IBaseEngineWrapper interfaces, therefore not needing to

specify any generic for different types of specific OneAI-Engines. Furthermore, this class

offers a list with items of type state setting to visualize which actions might be running and in

which state the current agent GameObject is in.

Listing 5-29: OneAI Entity Fields

Listing 5-31, a cutout from the ApplyLeafDecider method called from the Decision System

(see line 285 in Listing 5-27), showcasing how the OneAI-Engine is mapped to the action

setting using the mapping mechanic from Section 5.2, starting in line 180 and is fully revealed

in Listing 5-30.

Listing 5-30: OneAI Entity Hash To Engine Method

Listing 5-31: OneAI Entity Get Engine By Hash

Prototype Development

75

Listing 5-32 exposes a similar technique used in Listing 5-30, with the difference that a direct

cast is necessary to return the list with a specified Descriptor item type, to read or write from a

specific Descriptor class (see Listing 5-4 in Section 5.1.2), unlike simply calling an abstract

method as it is the case with the IBaseEngineWrapper interface.

This setup offers a performant, scalable and modular approach for adding custom and optional

data containers (Descriptors) and for mapping custom action settings to their respective

custom OneAI-Engines.

Listing 5-32: OneAI Entity Hash To Descriptor Method

Figure 5-5 features the OneAIEntity rendered in the Unity Inspector, setup in a way to call the

Decision System, whenever its state changes (see the OnStateChangedUnityEvent at the top),

providing an example use case of an EDA.

Figure 5-5: OneAI Decision System Component

Prototype Development

76

5.7 Graph Editor

As identified in the test cases of the evaluated asset packs in Chapter 4, a graph editor is a

powerful tool to illustrate the behavior of an AI in an organized and compact manner, while

offering abilities to add, remove and modify the AI behavior quickly and efficiently. A well

build graph editor increases the usability, user experience and maintainability drastically.

Based on the observations from Chapter 4, following graph editing features are essential for

this AIS prototype:

• Render a background grid area in the graph editor

• Offer zooming and panning in the grid view via the mouse inputs

• Host and display multiple setting nodes of different types

• Offer a context menu inside the graph editor to add, modify and remove setting nodes

instantly

• Offer a mechanic to connect nodes visually and logically via ports and connection

noodles

• Copy and clone one or multiple nodes in the graph editor

• Support editing for multiple nodes of same type

• Select and move one or multiple nodes at once

Building a graph editor from scratch is out of scope for this AIS prototype, due to its

complexity and required time investment. For this reason, the open-source framework

xNode [Extern-2] is used as the foundation for this graph editing tool. This framework is

modified greatly to meet the listed graph editor requirements and to be compatible with this

AIS prototype in the first place. Due to the vast amount of modifications, as well as it not

being relevant for the subject of this thesis, no code snippets are further examined regarding

this framework and graph editor.

Prototype Development

77

Figure 5-6 represents the graph editing tool available in this AIS prototype, covering each

graph editing feature highlighted in the beginning of this chapter. On the left-hand side, an

asset management/creation side panel is displayed, listing each available setting type available

to be hosted in the graph editor, with buttons per list item offering functionalities, such as:

• Defining the file path to store newly created settings persistently

• Create and add a new setting to the graph and save the file in the pre-defined persistent

file path

• Search for already existing settings in the Unity project and add them to the graph

The topmost tab buttons of the side panel change its contents to:

• Total nodes listed in the graph in addition to the Unity Inspector rendering the selected

setting nodes within the graph

• Asset management and creation panel, as already described and shown in Figure 5-6

• Custom code generation panel

The top and rightmost tab buttons outside the side-panel area indicate the node coverage,

toggling the display of nodes and node contents, simplifying the graph editor’s view.

Figure 5-6: OneAI Graph Editor Overview

Prototype Development

78

Due to performance reasons in the Unity Editor, node contents, ports, connections and icons

fade away if the graph is zoomed out at a certain distance Figure 5-7. The reason for the

performance issue is probably rooted in xNode, combined with ScriptableObjects being

rendered individually in Unity’s Editor GUI.

Figure 5-7: OneAI Graph Editor Zoom Fade

Debugging visual tree traversal in the graph editor is partly implemented and can be activated

if a Scene is run with a selected Decision System Component in the Unity Editor. This feature

is work in progress but offers a basic form of visualization for validated (green) and

invalidated (red) settings, illustrated in Figure 5-8.

Figure 5-8: OneAI Graph Editor Visual Tree Traversal

Prototype Development

79

5.8 Code Generation

The code generation tool in this AIS prototype offers custom script creation for:

• Actions

• Action Settings

• Blackboards

• OneAI-Engines

• Descriptors

• Conditions

Figure 5-9 illustrates the code generation panel found in the graph editor and offers the AI

programmer to set custom names, as well as folder paths for the automatically generated script

files. The generation is triggered by pressing the respective button below the naming fields.

Figure 5-10 showcases the list of template files including the boilerplate code used for the

automated code generation, expanding the core AIS logic for new AI behavior. The contents

of each template file have special markings like #SCRIPT_NAME_CONDITION#, which get

replaced by custom set name fields (see Figure 5-9) via file streaming (read and copy template)

and string replacement (replace markings with set names).

Figure 5-9: OneAI Code Generator Panel

Prototype Evaluation

80

Figure 5-10: OneAI Code Generator Template Files

Although the custom named script creation for the listed types works, this feature is work in

progress. The current implementation mainly must be tested for bugs and needs additional and

more sophisticated script generation options.

Since this code generator is usable as is for any AI programmer, the issue regarding bad

maintainability caused by rewriting boilerplate code is not (entirely) present.

6 Prototype Evaluation

To validate if this prototype meets the requirements defined in Chapter 2 in practice, the

evaluation process explained in Section 4.1 is applied on it.

The initial git repository of this prototype contains the wrapper Unity project with the core

AIS modules and testing environments together, making it difficult to extract the AIS to other

projects with different (newer) Unity versions. For that reason, the core AIS modules are

extracted into a separate git repository, which at this stage can be used as a git submodule for

new or existing Unity projects.

Evaluation Process: Step 1

Integrating the AIS prototype as a git submodule for the previously set-up Unity evaluation

project mentioned in Section 4.1 causes no issues and is compatible with the newer Unity

version 2020.3.19f1, with no limitations in regard to OSs. Though the used external package

NaughtyAttributes does not appear to work in this testing project. Upon further investigation,

it seems like the other AI asset packs collide with this framework, since no issues appear in a

new empty Unity project with the same version as the one used for the AI evaluation.

Prototype Evaluation

81

Evaluation Process: Step 2 & 3

Step 2 and 3 of the evaluation processes for this prototype are already established in Chapter 5,

describing the modified and mixed AI patterns used in this system.

The result being, that in theory this AIS provides scalability in the form of expandable and

inheritable core modules, with improvement and refactoring needed for the Decider settings

and the Decision System. Optimal performance is ensured by automatically creating hash

values for type mapping and splitting the decision-making algorithms from the action

execution implementations. The maintainability is provided by a graph editor in combination

with ScriptableObject settings to be (re)used in multiple AI behavior graphs.

The Unity wrapper project provided in the attached USB device contains this AIS prototype

and offers example AI use cases (and behaviors), such as fighting, fleeing, following and

spotting.

Evaluation Process: Step 4

Listing 6-1 represents the custom action needed for the evaluation process. Line 70 calls the in

Listing 4-1 defined performance waster method, used in all AI asset pack evaluation tests.

Line 72-77 reads from and writes to the instance-based runtime CustomDataContainer

displayed in Listing 4-2, by incrementing the local (per instance) and global action calls, as it

is defined in the evaluation process.

Listing 6-1: OneAI Benchmark Test Action

Prototype Evaluation

82

Listing 6-2 showcases the custom Condition code, calling the waste performance method in

line 16 and similar to the testing action class reads from and writes to the

CustomDataContainer via a Descriptor Component. Finally incrementing the runtime local

(per instance) and global decision calls, starting from line 18 and ending in line 25. Line 27

returns with a chance of 50% either a successful or failed result object.

Listing 6-2: OneAI Benchmark Test Condition

Prototype Evaluation

83

Figure 6-1 illustrates 7 Decider settings (beige striped nodes) on the left-hand side, setup to

behave like selector composites (see Section 3.3) and 8 action settings (green striped nodes)

on the right-hand side, setup to dispatch any previous running action and add forever

repeating actions if chosen by the Decision System. A zoomed-out view of the balanced

decision tree is fully visible in Figure 6-2, showcasing all 16 action settings required for the

test case.

Figure 6-1: OneAI Benchmark Graph Section

Figure 6-2: OneAI Benchmark Graph Overview

Prototype Evaluation

84

While building the AI behavior in this graph, it is apparent that the graph editor performance

is worse, than the node graphs implemented in the evaluated asset packs from Chapter 4. As

mentioned in Section 5.7, this is probably caused by either rendering each ScriptableObject

individually or the integrated open-source framework xNode. Furthermore, renaming nodes in

this graph editor occasionally causes the Unity Editor to crash, which is not reproducible in

Unity 2018.4.0f1. Other than that, building the testing AI behavior is fairly simple and fast,

due to the supported editing and cloning of multiple selected settings at once. In conclusion,

the maintainability of the node editor graph leaves room for improvement but does not fail

building a working AI behavior in a swift manner.

Foreach custom action type a respective custom OneAI-Engine is required to be added as a

Component to the OneAIEntity GameObject. This can lead to maintainability issues if it is not

clear to the AI designer, which and how many OneAI-Engines are required by the given AI

behavior graph. For that reason, a Unity Editor notification system, indicating missing or

required OneAI-Engine types is necessary for the next development iteration of this AIS

prototype.

This AIS prototype separates the action execution system from the decision-making system,

unlike the evaluated asset packs in Chapter 4 and the investigated AI patterns in Chapter 3.

This raises the question in how often should the decision-making algorithm be called?

There is no general representation for every game genre, indicating how often the

decision-making process must or will be called at a given frequency. Calling the

decision-making algorithm only once or every frame is unlikely to happen, since AI agents

oftentimes remain in a certain state for a certain amount of time before changing to another

one, repeating the process.

Prototype Evaluation

85

For that reason, the custom Decision System illustrated in Listing 6-3 is created, calling the

decision-making algorithm every 100ms with either a chance of 50% or if no action setting

has been chosen (see line 18 - 25). As a result, 2 distinctive benchmark test cases are created,

one splitting the Decision System from the action execution and one traversing the tree each

frame to determine the performance cost differences.

Listing 6-3: OneAI Benchmark Test Decision System

Prototype Evaluation

86

Splitting the decision-making algorithm from the action execution system results as expected

in more actions than decisions being called (see Figure 6-3). The total number of executions

does not grow linear for each newly added agent, but rather decreases over time. Furthermore,

it appears that the action and decision calls would cross if the graph were to be extrapolated,

possibly caused by more random decisions being called based on the implemented arbitrary

decision algorithm (see Listing 6-3).

Figure 6-3: OneAI Benchmark Method Calls for 30s (Split Systems)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Global Total Calls

Prototype Evaluation

87

Figure 6-4 visualizes a linear increasing ms rate per added agent, with the maximum being

4,5ms per frame in the extreme case of 1,000 agents in one Scene at once. This proves, that

very little CPU time is wasted when separating decision-making from action execution, even

if the decision-making algorithms are potentially called every 100ms, as it is the case in this

implementation (see Listing 6-3).

Figure 6-4: OneAI Benchmark CPU Usage (Split Systems)

The values of the GCAF column visible in Table 6-1 showcase a linear expansion of memory

usage per added agent (each row is multiplied by the factor 10). Due to the fact that the

decisions are called at random and thus unpredictable times, the category GCUM displays an

inconsistent growth relative to the increasing number of agents. As seen in the last column

OC, each newly added agent represents 6 native objects.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 134B 17.7MB 6,210

10 Agents 1.4KB 15.3MB – 16.7MB 6,210

100 Agents 12.8KB 16.7MB – 20.1MB 6,750

1,000 Agents 124.5KB 28.9MB – 39.1MB 12,150

Table 6-1: OneAI Benchmark Memory Usage per Frame (Split Systems)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Prototype Evaluation

88

As expected and observed in the previous evaluated AI asset packs (see Section 4.2, 4.4 and

4.5) the decision-making calls overrule the action calls if both systems are not separated from

each other (see Figure 6-5). The total number of action calls stagnates and does not reach as

high as demonstrated in Figure 6-3, probably due to more performance being wasted on

redundant decision calls in addition to less captured frames (140 missing) caused by the

restricted testing time of 30s, illustrated in Figure 6-6.

Figure 6-5: OneAI Benchmark Method Calls for 30s (Joined Systems)

Figure 6-6: OneAI Benchmark CPU Profiler (1,000 Agents & Joined Systems)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

1 Agent 10 Agents 100 Agents 1,000 Agents

Global Action Calls Global Decision Calls Total Global Calls

Prototype Evaluation

89

Figure 6-7 displays a linear growth of the median ms rate per frame foreach added agent to the

benchmark test Scene, with the difference to Figure 6-4 being that overall more ms are needed

for the decision-making algorithm than the action execution. The extreme high cost of roughly

50ms for 1,000 agents is probably caused by the inefficient decision-making switch statement

and the repeating termination and initialization of actions for each frame, concluding that it is

not recommended to make a decision call every frame with this AIS prototype.

Figure 6-7: OneAI Benchmark CPU Usage (Joined Systems)

Column GCAF of Table 6-2 showcases for the first 1 to 10 agents a large jump in memory

usage but appears to stagnate or at least is close to being linear in growth for the agent

intervals of 10 to 1,000. Similarly, the expansion of memory usage per added agent displayed

in the category GCUM appears to decrease, especially visible between 100 and 1,000 agents.

As for the column OC, each agent round about represents 6 native objects, equal to the

observations made in Table 6-1.

 Memory: GCAF Memory: GCUM Memory: OC

1 Agent 2.0KB – 10KB 16.8MB – 17.5MB 6,200

10 Agents 40.6KB – 71.6KB 16.9MB – 18.4MB 6,240

100 Agents 482.7KB – 600KB 19.2MB – 22.7MB 6,780

1,000 Agents 5.4MB – 5.6MB 31.1MB – 43.2MB 12,180

Table 6-2: OneAI Benchmark Memory Usage per Frame (Joined Systems)

0

10

20

30

40

50

60

1 Agent 10 Agents 100 Agents 1,000 Agents

CPU: Median Script Execution Time per Frame (ms)

Conclusion and Outlook

90

In conclusion, the benchmark tests prove that splitting the decision-making algorithms form

the action executions is drastically faster and efficient compared to when convoluting both

systems. This prototype appears to manage memory in a clean manner and additionally

provides a stable and high FPS rate if the decision-making algorithms are treated separately

but not if executed each frame as it is done in common asset packs and AI patterns

(see Chapter 3 and 4).

7 Conclusion and Outlook

This thesis highlights issues of the established AI frameworks (see Chapter 3) and asset packs

(see Chapter 4) regarding the requirements for a generic AIS defined in Chapter 2 and offers

solutions to overcome those problems in Section 3.10 and 4.7, finally implementing them in

the AIS prototype in Chapter 5.

As proven by the AIS prototype benchmark results in Chapter 6, the combination of multiple

(modified) AI frameworks is the key to build a scalable, performant and maintainable generic

AIS.

Overall, this prototype meets the requirements of a generic AIS, unless the decisions must

be executed each frame. This prototype is capable of being integrated in (new) game projects

of any game genre using the Unity3D Engine, although there are still some unfinished

features and code parts that must be refactored in the next development iterations, being:

• Generate template scripts via a GUI

• Debug AI decisions and running actions in the graph visually

• Improve the graph editor’s performance and stability, by either replacing or further

improving the open-source framework xNode

• Refactor the Decision System and Decider settings to fix the scalability issue regarding

custom decision-making algorithms when inheriting said classes, as mentioned in

Section 5.1.4 and 5.5

• Build a notification system, indicating which OneAI-Engines must be added to an

OneAIEntity when using the respective graph for maintainability reasons

o Additionally offer an auto fill option, which adds the OneAI-Engine

Components automatically to the OneAIEntity GameObject

• Offer special Condition or Decider settings, which implement the Fuzzy Logic pattern

of Section 3.6

• Build a test AI behavior, that implements the GOB pattern as described in Section 3.5

Acknowledgments

91

Acknowledgments

Special thanks to B. Sc. Fabio Anthony for giving me the opportunity to combine my passion

and my project with this bachelor thesis, always supporting me with great ideas and

references.

Most meetings we had, went over the estimated time because we went down the rabbit hole

talking excited about AI, the gaming world and other interesting topics.

Thanks Fabio, for your support!

Appendix A - List of Figures

92

Appendix A - List of Figures

Figure 3-1: Simple FSM Example .. 9

Figure 3-2: Simple Binary Decision Tree Example ... 10

Figure 3-3: Simple Non-Limited Decision Tree Example ... 11

Figure 3-4: Simple Behavior Tree Example ... 12

Figure 4-1: BD Graph UI Excerpt .. 23

Figure 4-2: BD Benchmark Testing Graph Fragment .. 24

Figure 4-3: BD Benchmark Testing Graph Entire View .. 25

Figure 4-4: BD Benchmark Method Calls for 30s ... 25

Figure 4-5: BD Benchmark CPU Usage .. 26

Figure 4-6: BD Memory Profiler Excerpt (1,000 Agents) ... 27

Figure 4-7: EA3 AI Behavior Setup ... 28

Figure 4-8: RVSAI Node Explanation [29] ... 30

Figure 4-9: RVSAI Test AI Setup .. 30

Figure 4-10: RVSAI Test Graph Prefab ... 31

Figure 4-11: RVSAI Global Variables ... 31

Figure 4-12: RVSAI Load Balanced AI Setup ... 33

Figure 4-13: RVSAI Non-Load Balanced AI Setup .. 33

Figure 4-14: RVSAI Benchmark Test AI Behavior ... 34

Figure 4-15: RVSAI Benchmark Method Calls for 30s (Non-Load Balanced) 35

Figure 4-16: RVSAI Benchmark CPU Usage (Non-Load Balanced) 35

Figure 4-17: RVSAI Benchmark Method Calls for 30s (Load Balanced) 37

Figure 4-18: RVSAI Benchmark CPU Usage (Load Balanced) .. 38

Figure 4-19: FSMAIT Graph Test.. 40

Figure 4-20: FSMAIT Editor Bug .. 40

Appendix A - List of Figures

93

Figure 4-21: FSMAIT Benchmark Setup - Any State .. 42

Figure 4-22: FSMAIT Benchmark Setup - Classic .. 42

Figure 4-23: FSMAIT Benchmark Method Calls for 30s (Classic Setup) 43

Figure 4-24: FSMAIT Benchmark CPU Usage (Classic Setup) .. 44

Figure 4-25: FSMAIT CPU Profiler Excerpt (1,000 Agents & Classic Setup) 44

Figure 4-26: FSMAIT Benchmark Method Calls for 30s (Any State Setup) 46

Figure 4-27: FSMAIT Benchmark CPU Usage (Any State Setup) .. 47

Figure 5-1: OneAI Base Action Settings .. 57

Figure 5-2: OneAI Branch-Leaf Decider ... 58

Figure 5-3: OneAI Branch Decider .. 58

Figure 5-4: Generic Mapping Issue .. 60

Figure 5-5: OneAI Decision System Component ... 75

Figure 5-6: OneAI Graph Editor Overview ... 77

Figure 5-7: OneAI Graph Editor Zoom Fade ... 78

Figure 5-8: OneAI Graph Editor Visual Tree Traversal .. 78

Figure 5-9: OneAI Code Generator Panel .. 79

Figure 5-10: OneAI Code Generator Template Files ... 80

Figure 6-1: OneAI Benchmark Graph Section ... 83

Figure 6-2: OneAI Benchmark Graph Overview ... 83

Figure 6-3: OneAI Benchmark Method Calls for 30s (Split Systems) 86

Figure 6-4: OneAI Benchmark CPU Usage (Split Systems) ... 87

Figure 6-5: OneAI Benchmark Method Calls for 30s (Joined Systems) 88

Figure 6-6: OneAI Benchmark CPU Profiler (1,000 Agents & Joined Systems) 88

Figure 6-7: OneAI Benchmark CPU Usage (Joined Systems) ... 89

Appendix B - List of Listings

94

Appendix B - List of Listings

Listing 4-1: Performance Heavy Method Simulation .. 21

Listing 4-2: Custom Data Container .. 21

Listing 4-3: EA3 RBS Code Snippet .. 29

Listing 4-4: RVSAI Variable Bool Provider .. 32

Listing 4-5: RVSAI Type Conversion.. 32

Listing 4-6: FSMAIT Benchmark Custom Action ... 41

Listing 4-7: UAIS RBS Code Snippet .. 49

Listing 5-1: OneAI Base Condition Method .. 54

Listing 5-2: OneAI State Condition ... 54

Listing 5-3: OneAI Base Condition For Descriptors .. 55

Listing 5-4: OneAI Health Descriptor Condition ... 55

Listing 5-5: OneAI Tree Traversal Method ... 59

Listing 5-6: OneAI Decisions Enum .. 59

Listing 5-7: OneAI Base Engine .. 61

Listing 5-8: OneAI Base Settings For Engine .. 61

Listing 5-9: OneAI Automatic Type To Hash Generation ... 62

Listing 5-10: OneAI Action Wrapper Interface ... 64

Listing 5-11: OneAI Base Action ... 64

Listing 5-12: OneAI Base Action Abstract Methods ... 65

Listing 5-13: OneAI Base Engine Run Actions ... 65

Listing 5-14: OneAI Base Engine Wrapper Interface .. 66

Listing 5-15: OneAI Base Engine Header .. 66

Listing 5-16: OneAI Base Engine Action Queues ... 67

Listing 5-17: OneAI Base Engine Tick Method .. 67

Appendix B - List of Listings

95

Listing 5-18: OneAI Follow Blackboard Example .. 68

Listing 5-19: OneAI Follow Engine Example ... 68

Listing 5-20: OneAI Follow Engine Tick Usage ... 68

Listing 5-21: OneAI Tick In Update Method ... 68

Listing 5-22: OneAI Follow Engine Action Creation .. 69

Listing 5-23: OneAI Base Engine EDA ... 70

Listing 5-24: OneAI Health Descriptor Example ... 70

Listing 5-25: OneAI Decision System Tick Method .. 71

Listing 5-26: OneAI Decision System Filter Deciders .. 72

Listing 5-27: OneAI Decision System Transfer Setting .. 73

Listing 5-28: OneAI Decision System Update Example .. 73

Listing 5-29: OneAI Entity Fields .. 74

Listing 5-30: OneAI Entity Hash To Engine Method .. 74

Listing 5-31: OneAI Entity Get Engine By Hash ... 74

Listing 5-32: OneAI Entity Hash To Descriptor Method ... 75

Listing 6-1: OneAI Benchmark Test Action .. 81

Listing 6-2: OneAI Benchmark Test Condition ... 82

Listing 6-3: OneAI Benchmark Test Decision System .. 85

Appendix C - List of Tables

96

Appendix C - List of Tables

Table 1-1: Unity3D Keywords ... 6

Table 4-1: Profile Moduler Explanation .. 22

Table 4-2: BD Benchmark Memory Usage per Frame .. 27

Table 4-3: RVSAI Benchmark Memory Usage per Frame (Non-Load Balanced) 36

Table 4-4: RVSAI Benchmark Memory Usage per Frame (Load Balanced) 38

Table 4-5: FSMAIT Benchmark Memory Usage (Classic Setup) ... 45

Table 4-6: FSMAIT Benchmark Memory Usage per Frame (Any State Setup) 47

Table 6-1: OneAI Benchmark Memory Usage per Frame (Split Systems) 87

Table 6-2: OneAI Benchmark Memory Usage per Frame (Joined Systems) 89

Appendix D - List of External Frameworks

[Extern-1] D. Rizov & N. Grzonkowski, “GitHub: NaughtyAttributes,” [Online]. Available:

https://github.com/niggo1243/NaughtyAttributes. [Accessed 10 2021].

[Extern-2] T. Brigsted, “GitHub: xNode,” [Online]. Available:

https://github.com/Siccity/xNode. [Accessed 10 2021].

Appendix E - List of Required Tools

[Tool-1] Microsoft, “Microsoft: C# documentation,” [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/. [Accessed 10 2021].

[Tool-2] Unity3D, “Unity,” [Online]. Available: https://unity.com/. [Accessed 10 2021].

[Tool-3] L. Torvalds, “Git,” [Online]. Available: https://git-scm.com/. [Accessed 10

2021].

[Tool-4] GitLab, “GitLab,” [Online]. Available: https://gitlab.com/gitlab-org/gitlab.

[Accessed 10 2021].

https://gitlab.com/gitlab-org/gitlab

Bibliography

97

Bibliography

[1] M. Buckland, Programming Game AI by Example, 1. ed., USA: Wordware Publishing

Inc, 2005.

[2] Unity3D, “Unity Manual: GameObjects,” 1 8 2017. [Online]. Available:

https://docs.unity3d.com/Manual/GameObjects.html. [Accessed 11 2021].

[3] Unity3D, “Unity Manual: Prefabs,” 31 7 2018. [Online]. Available:

https://docs.unity3d.com/Manual/Prefabs.html. [Accessed 11 2021].

[4] Unity3D, “Unity Manual: ScriptableObject,” 15 10 2018. [Online]. Available:

https://docs.unity3d.com/Manual/class-ScriptableObject.html. [Accessed 11 2021].

[5] Unity3D, “Unity Manual: Introduction to components,” [Online]. Available:

https://docs.unity3d.com/Manual/Components.html. [Accessed 11 2021].

[6] Unity3D, “Unity Manual: Important Classes - MonoBehavior,” [Online]. Available:

https://docs.unity3d.com/Manual/class-MonoBehaviour.html. [Accessed 11 2021].

[7] Unity3D, “Unity Manual: Scenes,” [Online]. Available:

https://docs.unity3d.com/Manual/CreatingScenes.html. [Accessed 11 2021].

[8] Unity3D, “Unity Manual: The inspector window,” 1 2020. [Online]. Available:

https://docs.unity3d.com/Manual/UsingTheInspector.html. [Accessed 11 2021].

[9] Unity3D, “Unity Asset Store: AI Search,” [Online]. Available:

https://assetstore.unity.com/?q=AI&orderBy=1. [Accessed 10 2021].

[10] A. J. Champandard, AI Game Development: synthetic creatures with learning and

reactive behaviors, 2. ed., USA: New Riders Publishing, 2004.

[11] I. Millington, AI for Games, 3. ed., Boca Raton: CRC Press: Taylor & Francis Group,

2019.

[12] S. Huang, “FreeCodeCamp What is Big O Notation Explained,” 16 1 2020. [Online].

Available:

https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-

1674cfa8a23c/. [Accessed 10 2021].

Bibliography

98

[13] R. C. Martin, Clean Code: a handbook of agile software craftmanship, 6. ed.,

Stoughton, Massachusetts: Pearson Education Inc, 2009.

[14] Unity3D, “Unity Asset Store: Behavior Search,” [Online]. Available:

https://assetstore.unity.com/?q=behavior&orderBy=1. [Accessed 10 2021].

[15] XXXXXX, “Unity Asset Store: XXXXXXXXXXX,” [Online]. Available:

https://assetstore.unity.com/packages/tools/visual-scripting/XXX. [Accessed 11 2021].

[16] XXXX, “Unity Asset Store: XXXXXXXX,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/XXXXX. [Accessed 11 2021].

[17] XXXXX, “Unity Asset Store: XXXXXX,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/XXXXX. [Accessed 11 2021].

[18] XXXXX, “Unity Asset Store: XXXXXXXXXX,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/XXXXXX. [Accessed 11 2021].

[19] XXXXX, “Unity Asset Store: XXXXXXXXXXXXX,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/XXXXX. [Accessed 11 2021].

[20] N-Studios, “Unity Asset Store: Ultimate AI System,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/ultimate-ai-system-187081. [Accessed 10

2021].

[21] Catsoft Works, “Unity Asset Store: Behavior (Game Creator 1),” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/behavior-game-creator-1-141443.

[Accessed 10 2021].

[22] DDS Games, “Unity Asset Store: Dynamic AI,” [Online]. Available:

https://assetstore.unity.com/packages/tools/animation/dynamic-ai-118275. [Accessed 10

2021].

[23] Walker Boys Studio, “Unity Asset Store: AI Behavior,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/ai-behavior-3442. [Accessed 10 2021].

Bibliography

99

[24] M. Desjardins, “Unity Asset Store: Breadcrumb Ai,” [Online]. Available:

https://assetstore.unity.com/packages/tools/ai/breadcrumb-ai-18364. [Accessed 10

2021].

[25] Unity3D, “Unity Manual: The profiler window,” 1 2020. [Online]. Available:

https://docs.unity3d.com/Manual/ProfilerWindow.html. [Accessed 11 2021].

[26] R. Venables, “Stackoverflow: Cost of common operations for C#?,” 16 5 2009.

[Online]. Available:

https://stackoverflow.com/questions/872442/cost-of-common-operations-for-c.

[Accessed 11 2021].

[27] XXXX, “XXXX: XXXXXXXXXXX Documentation,” [Online]. Available:

https://XXXX.com/support/documentation/XXXXX. [Accessed 11 2021].

[28] XXX XXX XXX, “GitHub: XXXXXXXX,” [Online]. Available:

https://github.com/XXX-XXX-XXX/XXX-XX/wiki. [Accessed 11 2021].

[29] XXX XXX, “Google Docs: XXXXXX,” [Online]. Available:

https://docs.google.com/document/d/XXXXX. [Accessed 11 2021].

[30] XXXX, “XXXXX: XXXXXXXXXX Documentation,” [Online]. Available:

https://www.XXXXX.xyz/aidocumentation. [Accessed 11 2021].

[31] XXXX XXX, “GitBook: Universal AI,” [Online]. Available:

https://XXXXX-XXXXX.gitbook.io/XXXX-XX/. [Accessed 11 2021].

[32] M. Warren, “Performance is a Feature: Why is reflection slow?,” 14 12 2016. [Online].

Available: https://mattwarren.org/2016/12/14/Why-is-Reflection-slow/. [Accessed 11

2021].

